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BARTON

ZWIEBACH:

Let's begin. So today's lecture will deal with the subject of squeeze states and

photon states. And it all builds up from the ideas of coherent states that we were

talking about last time. So let me begin by reminding you about the few facts that we

had about coherent states.

So a coherent state was born by taking the ground state of the harmonic oscillator

and displacing it with a translation operator some distance, x0. And then we let it go,

and we saw that this sort of wave function would just move from the left and to the

right coherently, without spreading out, without changing shape. It would move in a

nice way.

Now, this was obtained with a translation operator, which was an exponential that

had on the exponent the momentum operator. But we realized eventually that the

reason it all works out is because its exponential of something that depends on

creation or annihilation operators, and we could do something more general, which

was to use a complex number, alpha, and define a displacement operator, a more

general one, that is some linear combination of a and a dagger with alpha and the

complex conjugate of alpha. So this is only proportional to the momentum if alpha is

real, but if alpha is not real, that operator in the exponent is not quite the

momentum. It's something that has a bit of position as well.

So this is a more general operator, but on the other hand, it's clear that it's anti-

Hermitian, because if you take the dagger of this thing, this term becomes that and

that term becomes this one, each one with a change of sign. So you're really with

an anti-Hermitian operator.

Therefore, the whole operator is unitary and you're acting with a unitary operator on
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the vacuum. And therefore, this state is also well normalized and represents a state

with some expectation value of the position. Just like a coherent state, we moved it

to the right and it had some expectation value of the position. But this one also has

some expectation value of the momentum.

So in fact, we realize that the real part of alpha in this axis was related to the

expectation value of the position divided by to the 0. So if you produce a coherent

state with this value of alpha in the complex alpha plane, well, you go down and

that's the expectation value of the position. You go horizontally, well, that's the

expectation value of the momentum scaled because this alpha is a pure number,

has no units. So this x over square root of 2 d0 and p d0 over h bar have no units,

and that's how it should be.

So we learned also that the annihilation operator acting on this coherent state was

alpha times the coherent state. So it's a very simple property. That number, alpha,

is the eigenvalue of the destruction operator.

Now, that's a one line computation based on this, or a two line computation maybe.

But it should be a computation that is easy for you to do. So make sure you know

how to get this very quickly from this definition.

So that's a coherent state. And then the thing we finished the lecture with was with

the time evolution of this coherent state. And the time evolution was that as the

state, alpha, in time becomes the state alpha at time t, it remains a coherent state

but the value of alpha is changed. In fact, the value of alpha is changed in such a

way that you can just imagine this thing rotating, and rotating with angular velocity,

omega.

So this thing was the coherent state, e to the minus i omega t alpha. So this whole

complex number, instead of being alpha, is just this. There's no comma t. This is the

time development of the state. And there was a phase here, e to the minus i omega

t over 2, that was not very relevant. But that's what the state was doing in time.

So basically, that's where we got last time. Before I push on, do you have any
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questions? I did post the notes associated to coherent states about half an hour

ago, so you have them. You do have two problems on coherent states in this

homework, so the notes should help you. But any questions about this picture?

OK. So I want to develop it a little more before starting with squeeze states. So

here's what I want to tell you. And this is an intuition that people have about these

states. Alpha is a complex number. And you know, it's a well-defined complex

number.

But you know, this is a coherent state, so it's not a position eigenstate. It's not a

momentum eigenstate. It's not an energy eigenstate. It has all kinds of

uncertainties. It has uncertainties in position, in momentum, and in energy. Yes?

AUDIENCE: On that complex plane where you have the x and the p, are those expectation

values of the position of momentum?

BARTON

ZWIEBACH:

Yes. I think I wrote them with expectation values of the position of momentum last

time. Yes. So given alpha, that number you get is the expectation value of position

or expectation value of momentum. Correct.

So actually, this is the expectation value of the position, but the position is a little bit

rounded. Yeah, this is the expectation value of the position. It's a number. But

intuitively, this is spread out a little. The position is not just one point. This is a

coherent state. It looks like a Gaussian wave function.

The momentum is also spread out a little. So in some sense, many people draw this

as a little blob. And that blob represents your intuition that yes, the expectation

value is this and the expectation value is this, but the position is, well, somewhere

around this thing and somewhere around that stuff.

You can complain, this is very hand wavy, but it's useful. It's good to have that

physical picture that the state really is some sort of blob here, not that the

expectation values are not well defined, but rather that it's something like this.

And I want to relate it to an idea that comes along with waves, and it's important for
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what we're going to be doing later today. If you have a wave with energy e, and

suppose your wave is a light wave. Light wave with energy e. And it's described by,

say, A cosine omega t. That's some component of the electric field or the magnetic

field for this wave. It is like that.

Well, we've been talking about energy time uncertainty, and we know that unless we

make things very precise. It's easy to get things wrong. So I will first do something

fairly imprecise to give you a feeling of what people talk about, and then we'll use

this picture to do it more precisely.

So if you have this wave, the face of this wave-- we'll call it phi-- is omega t. And if

we are naive there, the face is divided by omega is the error in time.

Now, this wave has energy E. It has some number of photons. So the energy, E, is

the number of photons times h bar omega. N is equal to number of photons. And

again, we could say delta E is delta N h bar omega, and then substitute these two

relations into this to see what we get.

Well, delta E is delta N h bar omega. Delta t is delta phi over omega. This should be

h bar over 2. The omegas cancel, the h bar cancels, and you get delta N delta phi is

about 1, or 1 over 2 or 1 over square root of 2.

And that's, in fact, the relation that people do take somewhat seriously, if you have a

wave in quantum optics and say, well, the uncertainty in the number of photons and

the uncertainty in the coherence of these photons, the phases, if they're out of

phase, they're not coherent, there's a relation of this kind.

And this derivation is certainly pretty bad. It's just not precise because even we

started with this that is not precise unless you really explain what you mean by delta

t. So let's see if we can make some sense of this picture here. So here we go. I

want to do a small calculation first. So let's see what we have.

In this coherent state, what is the expectation value of the number operator?

Expectation value of the number operator in alpha. Well, the number operator in

alpha, you would do this a dagger a in alpha.
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These are easy to do because a on alpha is alpha times alpha, and if you dagger

that equation, a dagger on alpha is alpha star. So you get-- I'll go slowly-- alpha

alpha star here, and then you get alpha alpha. And alpha has unit norm. These are

numbers, so this is equal to length of alpha squared. So if this is a harmonic

oscillator, the expectation value of the number operator, in fact, is the length

squared of this vector.

Now, how about N squared? N squared is a little more work because you have

alpha a dagger a a dagger a alpha. This one gives me the factor you know, this one

gives me the factor you know. And therefore, we already have alpha squared times

alpha a a dagger alpha.

And here, the a's and the a daggers are kind of in the wrong order because I know

what a is on a ket, but a is now on the bra. And I know what a dagger is on the bra,

but now a dagger is on the ket. But the answer is simple. You replace this by the

commutator plus the reverse order.

So this is equal to the commutator, which is 1, plus the thing in the reverse order.

And this is 1 plus alpha squared. So you have alpha squared times 1 plus alpha

squared, and that's the expectation value of N squared.

All that, because we're actually interested in what is delta N, the uncertainty in N in

the coherent state. And that would be this, square root of this, which is alpha to the

fourth plus alpha squared minus the square of the expectation value, which is minus

alpha to the fourth. And this is length of alpha.

So the uncertainty in N is just length of alpha. It happens to be the square root of

the expectation value of N. So in fact, if you think of this picture, you're tempted to

say, oh, this represents the number of excited states that you have. This length

represents the expectation value of N. No. The expectation value of N is this length

squared. This length represents delta N in the picture.

So what else can we say? Well, this picture is useful because now, I can be a little

more precise here. This thing is rotating. That is time evolution of your coherent
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state. Now, this thing this rotating, but I can ask now how wide this is.

So what is the uncertainty in x in a coherent state? Well, the uncertainty in x in a

coherent state is the same as the uncertainty of the ground state because you just

moved it. Uncertainty doesn't change. So the uncertainty, delta x, is in fact this

quantity that we call d0 over square root of 2. That's the uncertainty delta x, and the

uncertainty delta p is h bar over d0 square root of 2.

These are not hard to remember. d0 is the length scale of the harmonic oscillator,

so that's typically what the uncertainty should be. The square root of 2, yes, it's hard

to remember. But delta p is this one. And then the other thing that you know is that

the product should be h bar over 2, so that is correct.

Now, look at this. How big is this thing? If the uncertainty in x is d0 over square root

of 2, this width is about how much, roughly? Nobody? This is the uncertainty in x, d0

over square root of 2 in these units, if you move the expectation value of x plus the

uncertainty of x over 2 and the other uncertainty of x roughly.

This thing is d0 over square root of 2, so it represents basically 1/2, because you

change the expectation value of x by this amount, and then this thing moves 1/2.

The size of this is 1/2, roughly. Could be 1/4 or could be 2, but it's roughly 1/2.

And the vertical one corresponds to the uncertainty in momentum. So intuitively, this

is h over square root v0, so if you plug it in there, this amount, p plus delta p, you'll

get 1/2 as well. So in this plot-- yes?

AUDIENCE: Wouldn't the width be 1 because the uncertainty is the width in one direction

[INAUDIBLE]?

BARTON

ZWIEBACH:

Well, the uncertainty is neither the width in one direction or not. It's a Gaussian, so I

don't know where it stops. This picture is not very precise when I talk about this, so

let me leave it with 1/2 or something like that. I don't think we can do better.

Now, there's also 1/2 here. So finally, we get to something that is kind of interesting.

If really the state in some sense, in terms of x and p, is spread here, and this is
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moving around, the face is a little ambiguous. Because you would say, well, the face

is this one, but well, you could go the whole uncertainty that you go here.

The uncertainty in where the coherent state is, we could call the face here delta phi

in this picture. We don't know where this state is because it's a little blob. We know

the expectation values where they are, but the state itself is a little imprecise. So

there's an angle here in this diagram that represents the face because this is going

with frequency omega t. So this is the face as this goes around, so this angle, delta

phi, is how much.

Well, if this is 1/2 and this is 1/2, I'm going to assume that this is 1/2 as well, or 1, or

something like that. So it's 1 over this length. That's the uncertainty.

But delta N, we calculated. This is roughly. And delta N we calculated, and it's

exactly alpha. So delta phi delta N is about 1 correctly. And here, there is at least a

picture of what the face uncertainty is and why it originates. Yes?

AUDIENCE: Can you tell me again how the Gaussian relates to the uncertainty?

BARTON

ZWIEBACH:

One second. Let me see. I've got one question first.

AUDIENCE: Yes. Can you explain one more time where the 1/2's come from? [INAUDIBLE] the

graph. I'm not sure why.

BARTON

ZWIEBACH:

Yes.

AUDIENCE: Are you saying that the width is 1/2, or is that how high it is?

BARTON

ZWIEBACH:

The width of this little ball.

AUDIENCE: So how does that follow from the graph?

BARTON It's a little hand wavy, but I'll say it like this. I expect the position, if measured, to be
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ZWIEBACH: between expectation value of x plus minus delta x. So if I'm going to measure the

position of something in a state, the most likely measurement that I will get is the

expectation value of x, statistically, after I repeat this many times. But if I just

measure, I'm probably going to get some number between this and this.

So if you think of this diagram not as the expectation value of x in here, but

whatever you got for x as you measured, if you do 1,000 measurements, you're

going to get points all over here in some region because you measure x in one

case, then you measure the momentum, you get a plot of data, and you measure

them all. And then suppose you're doing it with x first. You measure x and you say,

well, I get all kinds of values. I don't know what the momentum is, but I get all kinds

of values. They're going to run all over here between these two positions.

So when I add to the expectation value of x this thing, when I want to see in this

graph, what it is, I must divide by square root of 2d. So I divide by 1 over square

root of 2 d0 to see how it goes and how I plot it in this graph because these are the

units in this graph. So if delta x is d0 over square root of 2, I'm going to get some

values that go from the expectation value of x up to 1/2 more and 1/2 less.

AUDIENCE: So it's not actually 1/2. It's actually 1/2 times whatever that set amount.

BARTON

ZWIEBACH:

Well, if I say this, that you obtain between this and that, then I should say it's 1.

Maybe I had in mind that you sort of get most things between 1/2 of delta x. It's not

terribly precise, but it's roughly this is the picture. You measure the position, you're

going to get that.

Similarly, you decide to measure momentum. You don't measure position, measure

momentum, and you're going to get roughly the expectation value, but you're going

to get a little plus minus uncertainty. So you're going to all points here in your

measurement. So this dashed thing is your histogram after doing lots of

experiments. You have lots of dots in here. And roughly, this is how it comes about.

It's not terribly precise because I cannot put a point either here, because if I say the

measurement was this, I'm suggesting that I also measured the momentum on that
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state, or I could only measure the position. But it's a rough idea, rough picture, of

how big the spread is here.

There is a mathematical theory to do this more precisely, although physically not

much clearer, which are called Wigner distributions. I don't think it helps too much to

understand it, but the rough picture is relatively clear. So if you divide by 1 over

square root of 2, this quantity that was equal to d over square root of 2, you get, in

this scale plus 1/2 and minus 1/2, so 1, 1, 1, and this value there. There was a

question there. Yes?

AUDIENCE: Can you explain again how the Gaussian relates to the uncertainty [INAUDIBLE]?

BARTON

ZWIEBACH:

So I don't know how the Gaussian relates to uncertainty in x. So basically, we

computed the uncertainty in x for the ground state, and I claimed that for a coherent

state, the uncertainty in x cannot change because you just took the state and you

moved it away.

And the uncertainty of x doesn't talk about what the expectation value of x is. That

changes when you move a state. But just how much it's spread and how much the

state is spread is not changed by a translation. So this is the old result for the

ground state uncertainty, ground state uncertainty, and neither is changed.

Let's go now into our squeezed states. So what are going to be squeezed states?

They're going to be pretty useful states. They have lots of applications nowadays.

They've been constructed over the last 10 years more and more often, and people

are now able to construct what is called squeezed states experimentally.

And the way we're going to motivate it is by imagining that you have a harmonic

oscillator, a particle n, and some spring, k, or an omega. And there's a Hamiltonian.

H is equal to p squared over 2 m plus 1/2 m omega x squared. But this Hamiltonian

is going to be the Hamiltonian of a particle that has mass m1, and the oscillator has

frequency w1, and that's what we're going to call the first Hamiltonian.

After a little while, you observe this Hamiltonian. I will erase this thing. We don't

need them anymore. We observe this thing and this has an uncertainty, delta x,
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proportional to-- we know this v over square root of 2, so h bar over 2 m1 omega 1.

And an uncertainty in p, which is delta p equals square root of h bar m1 omega 1

over 2.

And again, they saturate the bound if you have your ground state. So ground state

is here. These two uncertainties, the bound is saturated, all is good. Nevertheless,

suddenly, at time equals 0, this state, this particle, is in the ground state.

The Hamiltonian changes. There's an abrupt change in the physics. Maybe the

temperature was changed and the spring constant changed, or the particle, a drop

was added to it and its mass changed, but the Hamiltonian has changed all of a

sudden. So this Hamiltonian, H1, is valid for H less than 0 and a particle in the

ground state.

So the particle's in the ground state, the Hamiltonian is fine there, but suddenly, the

Hamiltonian changes. The particle identity has not changed. The particle is there,

but it is the Hamilton that changes. So there's an H2, p squared over 2 m2 plus 1/2

m squared w squared 2 x squared. The picture is physically clean. The particle is

sitting there in the ground state, and suddenly, the parameters of the system

change.

So this particle was having a good time, it was at the ground state, relaxed. Then

suddenly, the wave function didn't change at time equals 0. It was spread over

some distance. No measurement was done, nothing. And suddenly, this particle

finds itself with some wave function but in another Hamiltonian. From now on, its

time evolution is going to be governed by the second Hamiltonian.

Now, since the second Hamiltonian is different from the first Hamiltonian, this

particle is not going to be any more in the ground state. Even though it was in the

ground state of the first Hamiltonian, it's not anymore in the ground state of the

second Hamiltonian as soon as the thing gets turned on. So for t greater than 0, this

Hamilton is there.

So actually, the wave function does not change, so let me write delta x, and I'll write
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it the following way, h bar over 2 m2 omega 1. But you say, no, delta x didn't

change. Correct. So I'll put the factor m2 w2 over m1 w1, and now it's the same

delta x. Similarly, for delta p, I will write that this is square root of h bar m2 omega 2

over 2, and put the factor m1 omega 1 over m2 omega 2 in front in such a way that

it is the same delta x and the same delta p.

Now, delta x times delta p multiply to be h bar over 2, and they still multiply to that

number because I didn't change them. But this is equal-- I'll call this number e to the

minus gamma. I'll go to another blackboard. Delta x is e to the minus gamma times

square root of h bar over 2 m2 omega 2. And delta p is e to the gamma, because

it's the inverse factor on the one that we call gamma, square root of h bar m2

omega 2 over 2, where e to the gamma is the square root of m1 omega 1 over m2

omega 2.

Look, we've done very simple things. We haven't done really much. But already, we

start to see what's happening. From the viewpoint of the second Hamiltonian, these

uncertainties are not right. They are not the uncertainties of the ground state,

because from the viewpoint of the second Hamiltonian, the ground state uncertainty

is this and the ground state uncertainty is this.

And indeed, this particle was in the ground state, it had some Gaussian, but that's

not the right Gaussian for the second Hamiltonian. It's the right Gaussian for the first

Hamiltonian. So it's not in the ground state of the second Hamiltonian, but it's in a

particular state in which, if gamma is positive, the uncertainty in x is squeezed from

the lowest uncertainty that you get in an energy eigenstate. And the uncertainty and

the momentum will be stretched in that direction.

So you see, in the ground state of the harmonic oscillator, you get that uncertainty,

and that's a canonical uncertainty. But this uncertainty is squeezed because it's

different from what it should be, and this is squeezed. So from the viewpoint of the

second Hamiltonian, the ground state of the first Hamiltonian is a squeezed state.

It's a staple whose uncertainties have been squeezed.

And those states exist, and the purpose of what we're going to do now is try to
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determine them, find them, see what they are, how they behave. Any questions?

Yes, Nicholas?

AUDIENCE: I'm a little confused why we can say that delta x [INAUDIBLE] these new ones are

just related to the old ones by this factor.

BARTON

ZWIEBACH:

OK. You see, what I assumed is that before time equals 0, you had a Gaussian.

That was the original Gaussian. That was the original wave function, and you had

some delta x and some delta p that were given by this one [INAUDIBLE].

Now, I didn't do anything except rewrite the same quantities here, because what I

said next was that even though at time equals 0, the Hamiltonian changes, at time

equals 0, the wave function doesn't change. The wave function remains the same.

After that time, it's going to start changing because the new Hamiltonian kicks in.

But this delta x's are the same as that I wrote, and here are the same. But here, you

see clearly that this delta x with respect to the second Hamiltonian is not the one

that it would be if it would be a ground state, nor the delta p. Yes?

AUDIENCE: Just at the instant you change the Hamiltonian, because they might have all

[INAUDIBLE], the uncertainties would change.

BARTON

ZWIEBACH:

Sorry?

AUDIENCE: Is this just at the instant where we change the Hamiltonian, because after some

time, the wave function might change [INAUDIBLE].

BARTON

ZWIEBACH:

That's right. This is just after I change the Hamiltonian. The time evolution of this

state is something that we have to figure out later. But after I've changed the

Hamiltonian, the state looks squeezed.

So how can we calculate and understand these things? So the way to think of this is

the following. You see, you have this system of two Hamiltonians. There's an x and

a p operator, and the second Hamiltonian has an x and a p operator. These are the

properties of the particles.
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Therefore, what that I'm going to think of is that the x and the p operators are the

operators that describe the particle. They are unchanged because we're talking

about this same object, same particle. So if I have the x operator, which is equal to

this formula, h bar over 2 m1 omega 1 a1 dagger plus a1 like this. From the first

Hamiltonian, the x's are related to a1's and a1 daggers, but this is the same x

describing the same position as you would do in the second Hamiltonian. So m2 w2

a2 hat plus a2 hat dagger.

It's a very strong physical assumption I'm making here. It's an assumption that's so

strong that in many ways, you could almost say, well, I'll buy it, but we'll see if it

gives something reasonable. I'm saying the x operator is really the same thing, and

you could view it as constructed from ingredients of the first Hamiltonian or the

second Hamiltonian. So is the p operator. p, which is-- well, I have a formula here--

minus i m1 omega 1 h bar over 2 a1 minus a1 dagger-- should be the same as

minus i m2 omega 2 h bar over 2 a2 minus a2 dagger.

So x and p are not changing. We're not talking about two particles that have an x1

and a p1, and the second particle, an x2 and a p2. It's just one particle has an x and

a p is what you observe when you measure position and you observe when you

measure momentum. Nevertheless, x and p are related in this way to the creation

and annihilation operators. So we're going to find from this some very strange

relation between the creation operators, the annihilation operators of the first

system and the second system.

So what do we get, in fact? Well, the constants disappear from the first equation

roughly, and you get a1 dagger is equal to-- you get the ratio of m1 omega 1 over

m2 omega 2, so you get e to the gamma a1 a2 plus a2 dagger. From the bottom

one, a1 minus a1 dagger is equal to e to the minus gamma a2 minus a2 dagger.

These two equations give you that. It should be clear. You just cancel the constants

and remember the definition of e to the gamma.

And now we can solve for a1 and a1 dagger in terms of a2 and a2 dagger. And

what do we find? a1 is equal to a2 cosh gamma plus a2 dagger sinch gamma, and
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the dagger is what you would imagine. So a1 dagger is equal to a2 dagger cosh

gamma plus a2 sinch gamma.

The second equation that you can calculate is the dagger of the first. It should be

that. And now you've found the scrambling of the creation, annihilation operators.

The old annihilation operator is a mixture of the new annihilation operator and a

creation operator. They're mixed. It's a very strange thing that has happened, a

mixture between creation and annihilation operators.

This is so famous in physics, it has a name. It's called the Bogoliubov

transformation. It appears in the analysis of black hole radiation. There's a

Bogoliubov transformation between the fields far away of the black hole and the

fields near the black hole. It appears everywhere. And here it has appeared, so

we're going to try to understand what it does for us.

Similarly, you can find what a2 is in terms of a1's by the symmetry of these

equations. This corresponds to actually letting gamma go to minus gamma,

because if you pass these gammas to the other side, the equations are of the same

form. By letting 1 become 2, 2 becomes 1 and gamma goes to minus gamma. So

we don't need it right now, but in case you want to find the other ones, the 2's in

terms of the 1's, you would just change the sign of gamma and it would work out.

So this relation is the key to allow you to calculate things. So what do we want to

calculate? Well, here is what I would like to calculate. The ground state of the first

oscillator is this thing we had. It's the thing that has the wave function. But I want to

express it as a superposition of states of the second oscillator because the second

oscillator is what gives you the new Hamiltonian and what's going to tell you how the

state is going to evolve later.

So presumably, this state is some number times the ground state of the second

oscillator, plus maybe some creation operator on the second vacuum as well with a

constant. Now, this wave function of the ground state is even, and I would expect

that it's a superposition of even eigenstates of the second oscillator as well.
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And even eigenstates are things that have even occupation numbers. Those are the

even Hermite polynomials. So presumably, it goes like this and things with four

oscillators and things like that. So what that after is this sort of expression of the

original state in terms of energy eigenstates in terms of anything of the second

oscillator.

So how can we do that? Well, one thing we know about this state is that a1 [? on it

?] is equal to 0. It's killed by a1, but that a1 is an interesting thing. It's a2 cosh

gamma plus a2 dagger sinch gamma, and that thing must kill that state.

So I could at least, if I had infinite time, put a few terms and try to calculate more or

less what kind of state is killed by this strange combination of creation and

annihilation operators. You see, we know a ground state is killed by the normal

annihilation operator. That's what this is. But this operator, now we know it's given

by this formula over there, and then it must kill all that.

So we're faced with a problem that is in principle fairly difficult, and you could not

hope for an except solution unless there's something very nice going on. Happily,

squeezed states are still very nice and tractable states, so let's see what we can do.

Well, what I'm going to do is to put an ansatz for this state based on this expansion

that I had there. I would say, look, there's going to be a normalization constant, but

at the end of the day, we have things acting on the vacuum, so there's going to be

something very messy acting on the vacuum of 2. And what is that going to be?

Well, we've learned about coherent states that are exponentials of oscillators,

exponentials of a's and a daggers added. So here, we're going to attempt

something a little more general. I'll put an exponential minus 1/2, and what should I

put?

Well, let's try to be simple minded still. It seems to go in even power, so if we're very

lucky, maybe we can put just an a2 dagger a2 dagger here, an exponential

something quadratic in oscillators. And I don't know what the coefficient is in front,

and it may depend on gamma because I have to solve an equation with gamma. So
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I'll put minus 1/2 f of gamma times that. And we'll see if we can solve this.

So what does it mean to solve it? Well, it means that it must be annihilated by this

operator. So our computations with the creation and annihilation operators are

becoming more and more complicated. They look more and more complicated.

They're really not harder. Let's see what happens.

So I need now that a2 cosh gamma plus a2 dagger sinch gamma kill this state. So

the N is going to go outside. It's a number. So acting on e to the minus 1/2 f of

gamma a2 dagger a2 dagger on the vacuum sub 2, that must be 0.

How does one solve this? Well, let's see what we have. Let's see this term. a2

dagger, good. a2 dagger commutes with a2 dagger, so I can bring the a2 dagger all

the way to the right and it doesn't kill the vacuum, so I don't gain anything. Can be

to the right or to the left because it commutes with this whole thing, so I haven't

gained anything if I move it, so false start. I don't want to move that one. This one, I

want to leave it here, and this one somehow must produce something that cancels

this one.

Now, a2, on the other hand, is the kind of thing that always should be dealt with

because this is an annihilator and that does kill that. So as it moves along, it

encounters obstacles, but obstacles are opportunities because an obstacle means

we're going to get something that maybe cancels that. So if it also went through and

killed the vacuum, we're finished. This doesn't kill the vacuum. Happily, it gets stuck

here. Now the thing that we have to hope is that we can disentangle that

commutator.

Now, here is a universal thing. How do I want to write this? I'm going to write it like

this. I have an a2, a number, I don't care about the number, and a complicated

thing, and a vacuum. Whenever you have an a, any operator, and a vacuum, this is

equal to a commutator with the operator on the vacuum. That should be second

nature because this is even given to that minus oa, but oa, the a is near to the

vacuum and it kills it. So whenever you have an a o vacuum, you can put the

commutator, so I'll do that here.
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So I put a2, the cosh gamma, I take it out. I put this whole thing minus 1/2 f a

dagger a dagger 2. This whole thing and the vacuum. That's the first term. And the

second term, I have to just copy it. Sinch gamma a2 dagger e to the minus 1/2 fa

squared dagger on the vacuum. All that should be 0.

So what do we get? Is that commutator doable or undoable? It's happily a simple

commutator, even if it doesn't look like it, because whenever you see a commutator

like that, you think A to the B, and then you know if you're in luck, this is just AB e to

the B, and this is true if AB commutes with B. So that's what you must think

whenever you see these things. Do mind this lucky situation.

Yes, you are, because with this commutator, one a will kill an a dagger, so you will

be left with an dagger. But a dagger commutes with b, which is a dagger a dagger.

So AB, A with B is just add an a dagger up to a function or a number, and then a

dagger commutes with B so you are in good shape. This is true.

So what do we get here? We get cosh gamma, and then we just get the

commutator of a2 with minus 1/2 f a2 dagger a2 dagger times the whole

exponential-- I won't write it-- times the vacuum plus sinch times a2 dagger times

the whole exponential times the vacuum.

We have to do this commutator, but the f doesn't matter. It's a constant. It's a

function. No operator in there. a2 with a2 daggers are 1. There are two of them, so

you get a 2, and the 1/2 cancels this, so you get minus cosh gamma f a2 dagger

times the exponential plus, from the other term, sinch gamma a2 dagger times the

exponential on the vacuum equals 0.

And, as promised, we were good. We get an a2 dagger, a2 dagger. These two

terms cancel if f is equal to tan hyperbolic of gamma, which is sine over cosine so

that these two things cancel. I can write this, of course, as minus cosh gamma f plus

sinch gamma a2 dagger, the exponential, and the vacuum, equals 0.

So it's just a simple relation, but there we go. Tanh gamma is the thing. Tanh

gamma gives you the answer, and let me write this state so that you enjoy it. Let's
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see. The state is just a fairly interesting thing, this 01 expressed in the new Hilbert

space of the second oscillator is some n of gamma times the exponential of minus

1/2 tangent hyperbolic of gamma a2 dagger, a2 dagger on the vacuum sub 2.

And you need the normalization, n of gamma, and it will be done. Now, the

normalization, you may say well, look, normalizations are good things. Sometimes,

you work without normalizations and you're OK, but it turns out that these

normalizations are pretty useful, and unless you get them, some calculations are

kind of undoable.

So it's a little bit of a challenge to get that normalization. You can try in several

ways. The most naive way is to say, well, this must have unit norms, so n squared,

and then I take the bra of this and the ket of that, so it would be a vacuum, an

exponential of minus 1/2 tangent a a, and an exponential of minus 1/2 tangent a

dagger, a dagger. Must be 1. n squared times that.

The problem is that I've never been able to compute this. At least it takes a long

time and you get it by indirect methods, but getting a number out of this is painful.

So there's one way of getting the normalization here that is not so bad. It's a little

surprising what you do. You do the following. You declare, I'm going to compute the

overlap of 2, the vacuum of 2, with the vacuum of 1. And now, what is this, n

gamma vacuum of 2 here, e to the minus 1/2 tanh gamma a2 dagger a2 dagger

vacuum of 2. How difficult is it to compute this inner product?

AUDIENCE: [INAUDIBLE].

BARTON

ZWIEBACH:

Sorry?

AUDIENCE: Not difficult.

BARTON

ZWIEBACH:

Not difficult. What is it?
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AUDIENCE: [INAUDIBLE]?

BARTON

ZWIEBACH:

Yeah, that thing.

AUDIENCE: e to the negative 1/2 tanh gamma. It's 1.

BARTON

ZWIEBACH:

Sorry?

AUDIENCE: I mean, you multiply the a2 dagger right across to the left hand side of the ket.

BARTON

ZWIEBACH:

Yeah, you're saying it, indeed. Look, this thing is as simple as can be. This is just 1.

Why is that so? You expand the exponential, and you have 1 plus things, but all the

things have a daggers. Now, a daggers don't kill this 1, but they killed the other 1 on

the left, and there's nothing obstructing them from reaching the left, so this is 1.

It's completely different from this one because if you expand this one, the a daggers

kill the thing but there's lots of a's to the left. And the a's want to get here, but

there's lots of a daggers to the right, so this is hard, but this is easy. So n of gamma

is 0 2 0 1. But what is that? If you introduce a complete set of position states, zx,

This is 0 2 x x 0 1.

This one is the ground state wave function of the first Hamiltonian, and this is the

start of the ground state wave function of the second Hamiltonian. And those you

know because you know m, omega. You know the ground state wave functions, so

this integral can be done. So this whole normalization is given by this integral, and

this integral gives you 1 over square root of cosh gamma. That interval takes a few

lines to make, but the end result is there.

So you got your coherent states. You got now the squeezed state completely

normalized, so let's write it out. 0 1 is equal to 1 over square root of cosh gamma

exponential of minus 1/2 tanh gamma a2 dagger a2 dagger on the vacuum sub 2.

Wow. That's it. That's a squeeze state that has been squeezed in such a way that

the squeezing parameter appears here in the exponential.
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Now, this is the way we got to it, but now I wanted to just think of it independently,

just from the beginning. If you had a Hamiltonian, this is an interesting state all in

itself because it is a squeezed state. It's a Gaussian, but of the wrong shape for this

system. This is a Gaussian of the right shape for system two. But once you put all

these oscillators, it's not anymore a Gaussian of the right type. It's a squeezed

Gaussian.

So if we forget about this system one, let me write this thing from the beginning and

say like this. We have a Hamiltonian, we have a ground state, we have m and

omega, and we have a and a dagger. Let's just define what we call the squeezed

vacuum, vacuum sub gamma, to be precisely this thing.

1 over square root of cosh gamma exponential of minus 1/2 tanh gamma a dagger

a dagger, not 2 anymore because we have just a single system. A single system,

the ground state, and now we've defined this state, which is what we had there

before, but we don't think of it anymore as, oh, it came from some other

Hamiltonian, but rather, this is a state on its own. It's a squeezed vacuum state.

And from the computations that we did here, the delta x for this state would be e to

the minus gamma h bar m omega. and m omega over here. So these are these,

and you don't need to know what gamma is. That's a number that somebody chose

for you. Any number that you want is gamma, and therefore, you use it to squeeze

the state. And that's what you've achieved.

So you have a Hamiltonian of a harmonic oscillator. You can construct the vacuum.

You know how to construct coherent states by acting on the vacuum. Now you know

how to construct squeezed states, states in which the expectation values do those

things.

We had a very nice formula where we began the lecture today in which the coherent

state was just a unitary operator acting on the vacuum. Now, we made sure to

normalize this, so we did check in this calculation that o gamma 0 gamma is equal

to 1.
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So this thing must come from the action of some unitary operator acting on the

vacuum. Which is that unitary operator that acts on the vacuum and gives you that?

Not so easy to find. All the computations here are a little challenging, as you've

seen. But here's the answer. Cosh gamma e to the exponential of minus 1/2 tanh

gamma a dagger a dagger should be something like an e to the what? Should be

something like e to the a dagger a dagger minus aa acting on the vacuum.

Why? Because certainly, the aa's are going to disappear, and you're going to get

products of this one squared. And this is anti-Hermitian, so that operator is unitary,

but I now must put the gamma somewhere there. So what should I put here in order

to get that to work?

Well, it's maybe something you can try by assuming gamma is very small and

expanding both sides, or finding a differential equation, or doing things, but the

answer is incredibly simple. It's e to the minus just gamma over 2. That's it.

Gamma appears here, and by the time you reorder this quadratic form-- you see,

what you have to do here is expand, and then you have powers of these, and then

you have to bring all the annihilators to the right and kill them. And then you have a

power series in squares of this thing. That will reassemble into this exponential.

It's almost a miracle that something like that could happen, but it does happen. And

it's a very interesting calculation, actually, to do that. We don't do it in the course. I

may post some pages that I did once this computation.

And that is a nice operator. We call it the squeezing operator. So s of gamma is a

unitary operator, s of gamma. The squeezed state of 0 gamma is equal to s of

gamma on the vacuum where s of gamma is equal to e to the minus gamma over 2

a dagger a dagger minus aa, that operator. It's a unitary operator and it does the

squeezing.

Actually, once you have squeezed states, you can do more things, and you can

squeeze and then translate. Those are the most general states that people use in

quantum optics. So you take a vacuum, you squeeze it with s of gamma, and then
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you translate it with v of alpha. And this is the state, alpha gamma, squeeze factor,

translation factor.

One picture of that is in our alpha plane. You take the vacuum that is some

spherical ball here in the x expectation value, p expectation value. You squeeze it.

You might decide, I don't want to have too much delta x, so you squeeze it and you

produce something like this.

That's a squeezed vacuum by the time you apply this. And then you do the alpha,

and you translate it out, and this state is now going to start rotating and doing all

kinds of motion. It's pretty practical stuff.

Actually, some of you are taking junior lab, and the person that works a lot there in

junior lab is Nergis Mavalvala, and she does gravity wave detection, and squeezed

states has been exactly what she's been working. In order to minimize

displacements in the gravity wave detectors, they have a squeeze vacuum state

injected into the detector to make the harmonic oscillator that represents the mirror

stabilize its uncertainty in position to the maximum possible. There's a whole

fabulous technique that people use with the squeezed states.

Now, the squeezed states allow you to construct some states that seemed to us that

they were pretty strange and that we never had good formulas for them. So that's

how I want to conclude the lecture. I will leave photon states for next time, but I want

to discuss one more application of the squeezed states, and this comes from limits.

So here is your squeezed state, e to the minus gamma. So let's squeeze the state

to the end. Take gamma to go to infinity. What happens to the squeezed state? So

you're narrowing out the ground state in position space to the maximum possible.

What happens to the state?

Well, it goes a little singular, but not terribly singular. Gamma is going to infinity, so

cosh is going to infinity as well. So the state is going kind of to 0, but 0 sub infinity.

It's proportional, but the exponential is good. Exponential of minus 1/2 tangent of

gamma as gamma goes to infinity is just 1. And this is a dagger a dagger on the
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vacuum.

This state is in almost terrible danger to be infinite. If you try to find its wave

function, you're not going to be able to normalize it. You've reached the end of the

road kind of thing because of this. Gamma goes to infinity. This is going to be

infinite here because this state, if you compute its overlap with itself, is blowing up.

And here, you see the niceness of this. It also suggests that gamma can go from

plus infinity to minus infinity, and that's a natural thing. Nevertheless, here, it goes

from plus 1 to minus 1. If you had a number 3 here, this is a state that blows much

worse than the worst delta function or derivative or square that you've ever had. It's

just unbelievably divergent because it just can't exist, this state. You're going

beyond infinity here to go behind this thing. So it's just pretty much impossible.

So the limit is states are reasonable as long as this quadratic form goes from minus

1 to 1. And when you go to 1, you get this, and what should this be? This should be

the wave function I associated to a delta function. This would be the position state, x

equals 0. Roughly, it's a delta function. And indeed, if you act with x on it, x,

remember, is a plus a dagger. Act on this exponential.

Now, do you remember how to do that? This a dagger doesn't do anything but the a

goes here, and it's a trivial commutator. You get minus a dagger. So it actually kills

this and gives you 0. So in fact, the exposition operator acting on here gives you 0.

It looks like it is really the state x equals 0.

If you go the other way around, and you take gamma to be minus infinity, the only

thing that changes here is the sign. So this is like the delta of x, or the x equals 0

state. And if you take 0 minus infinity, goes like x minus 1/2 plus 1/2 a dagger a

dagger on the vacuum.

And this state is a delta function in momentum. It's the momentum state p equals 0.

Why? Because gamma is going to minus infinity. The uncertainty of momentum is

going to 0. And therefore, indeed, if you act with the momentum operator on this

state, it's like acting with a minus a dagger, and you've changed the sign of this, but
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you've changed the sign here, so it also kills this state.

So it looks like we can really construct position and momentum eigenstates now with

squeezed states, and that's what they are supposed to be. A squeezed state is

something that has been squeezed enough that you can get a delta function. So

how do you finish that construction?

Here is the claim. Square root of 2 m omega over h bar x a dagger minus 1/2 a

dagger a dagger acting on the vacuum. This is the claim, that this is the x position

state. So basically, you have to squeeze first and then translate this thing to the

exposition.

So how do you check this? Well, you should check that the x operator, which is

something times a plus a dagger acting on this thing gives you little x. So you should

have that x operator on this thing gives you x x. And that is going to work out

because the a dagger is going to sit here and it's going to get canceled with the a

with this, but the a with this part is just going to bring down an x with the right factor.

So this state, which is a squeezed state and a little bit of a coherent state as well, is

producing the position eigenstate. In the harmonic oscillator, you can really

construct the position eigenstate and you can calculate the normalization. The

normalization comes out to be a rather simple thing. So at the end of the day, the

position eigenstate is m omega over pi h bar to the 1/4 e to the minus m omega x

squared over 2h bar. And this whole exponential, square root of 2 m omega over h

bar, x a dagger minus 1/2 a dagger a dagger acting on the vacuum.

So your basis of creation and annihilation operators on the harmonic oscillator is

flexible enough to allow for a concrete description of your position eigenstates, and

a tractable one as well. And that's the extreme limit of squeezing, together with

some little bit of coherent displacement. Next time, we'll do our photon states and

we'll illustrate the ideas of both coherent and squeezed states at the same time.
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