8.02 | Spring 2007 | Undergraduate

Physics II: Electricity and Magnetism

Course Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to …

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena.

Staff List

Visualizations:  
Prof. John Belcher

Instructors:  
Dr. Peter Dourmashkin  
Prof. Bruce Knuteson  
Prof. Gunther Roland  
Prof. Bolek Wyslouch  
Dr. Brian Wecht  
Prof. Eric Katsavounidis  
Prof. Robert Simcoe  
Prof. Joseph Formaggio

Course Co-Administrators:  
Dr. Peter Dourmashkin  
Prof. Robert Redwine

Technical Instructors:  
Andy Neely  
Matthew Strafuss

Course Material:  
Dr. Peter Dourmashkin  
Prof. Eric Hudson  
Dr. Sen-Ben Liao

Acknowledgements

The TEAL project is supported by The Alex and Brit d’Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, and the Helena Foundation. Many people have contributed to the development of the course materials. (PDF)

Learning Resource Types
Problem Sets
Lecture Notes
Online Textbook
Vizualization of a magnet levitating above a superconducting ring.
Magnet Levitating Above A Superconducting Ring: The image shows a permanent magnet levitating above a conducting non-magnetic ring with zero resistance. The magnet is levitated by eddy currents induced in the ring by the approaching magnet. These currents are always such as to repel the magnet, by Lenz’s Law. (Image by Mark Bessette.)