
6.006 Introduction to Algorithms Recitation 20 November 30, 2011

Perfect-Information Blackjack
Let’s remember what we covered in lecture. Suppose that we want to play Blackjack against a
dealer (with no other players). Suppose, in addition, that we have x-ray vision that allows us to see
the entire deck (c0, c1, ..., cn 1). As in a casino, the dealer will use a fixed strategy that we know−
ahead of time (stand-on-17), and that we allowed to make $1 bets (so with each round, we
can either win $1, lose $1, or tie and make no profits and no losses). How do we maximize our
winnings in this game? When should we hit or stand?

Let’s use dynamic programming to try to come up with the best sequence of moves for us to
make so that we will be able to earn as much as we can. Our approach will be as follows. We want
to guess when to hit and when to stand for some suffix of cards starting at index i.

Let i be the number of cards we’ve already played, and BJ(i) the best play using the remain-
ing cards (ci, ci+1, ..., cn 1). These BJ(i)s will be our subproblems. How many of them are there?−
Since i spans from 0 to n, we have O(n) subproblems.

What are our guesses? We have to guess how many times the player hits (requests another card).
There are O(n) choices for this guess. Here’s a detailed recurrence:

1 BJ(i):
2 if n-1 < 4: return 0, since there are not enough cards
3 for p in range(2, n-i-2): # number of cards taken
4 # player’s cards by deal order (player, then dealer, then player)
5 player = sum(c_i, c_{i+2}, c_{i+4:i+p+2})
6 if player > 21: # bust
7 options.append(-1 + BJ(i+p+2))
8 break
9 for d in range(2, n-i-p):

10 dealer = sum(c_{i+1}, c_{i+3}, c_{i+p+2:i+p+d})
11 if dealer >= 17: break
12 if dealer > 21: dealer = 0 # bust
13 options.append(cmp(player, dealer) + BJ(i+p+d))
14 return max(options)

Finding the player and dealer sums each takes O(n). Looping over p takes O(n). Therefore, the
whole thing takes O(n2) time.

We can also construct a DAG for this problem as we have in the past for other problems. The
vertices will represent the subproblems and the edges will represent connections between sub-
problems. In this case, the edges will point to subproblems with a greater i value (as seen in the
recurrence where we append to options). The edge weights will be the outcome (-1, 0, or 1). We
will then try to find the longest path (to maximize our winnings).

1

are

6.006 Introduction to Algorithms Recitation 20 November 30, 2011

Parent Pointers
To reconstruct the answer, any time we memoize the result to a subproblem, we also need to save
some additional piece of information that would help us reconstruct the solution. There are various
ways to do this. For example, instead of memoizing the result to a subproblem, we can memoize
a pair (2-tuple) of the result and the parent pointer. As a result, whenever we use a memoized
value, we have to take the 0th element (since the memoized value is now a pair of the answer to
our desired subproblem and a parent pointer). This means that the answer to the original problem
will also be a (result, parent pointer) pair. We can now loop until the parent pointer
is None, beginning with the parent pointer that was just returned to us, and navigate down these
parent pointers to reconstruct the result.

Longest Increasing Subsequence
The longest increasing subsequence problem is a problem where we want to find a longest sub-
sequence of a given sequence in which the subsequence elements are in sorted order. Note that
a subsequence can skip elements in the original sequence. We can solve this using dynamic pro-
gramming as well.

Wikipedia talks about the Van der Corput sequence. This is a sequence that, for any real num-
ber in [0, 1], contains a subsequence that converges to that number. It’s constructed by reversing
the base n representation of the sequence of natural numbers (1, 2, 3, ...). For example, in base 10,
the sequence begins with 0.1, 0.2, 0.3, ..., 0.9, 0.01, 0.11, 0.21, ...

The binary Van der Corput sequence begins with
0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15, ...

Two longest-increasing subsequences in this sequence are
0, 2, 6, 9, 13, 15.
0, 4, 6, 9, 11, 15.

To solve this using dynamic programming, we want to go through the sequence in order, keeping
track of the longest increasing subsequence found so far. Denote the element of the sequence
a0, a1, ..., an 1. We will define bi as the length of the longest subsequence ending with ai. Now we−
can build each bi as follows. Find all j such that j < i and aj ≤ ai, and collect them in a set S.
Then, our desired value of bi is max {bj|j ∈ S}+1 if S is nonempty and 1 if S is empty. After we
have found all n values of b, we simply choose the largest. We can use parent pointers to actually
construct the subsequence of the elements of a itself.

2

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

