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Clausius-Clapeyron Equation 
 

Let’s revisit solid-gas & liquid-gas equilibria. We can make an 
approximation: 
 
   >> ∆ ∆ ≈gas solid liquid gas

vapsubl,            ,  V V V V V V  
 
We can ignore the molar volume of the condensed phase compared to 
the gas. 
 
Taking the Clapeyron equation (exact), e.g. for solid-gas eq. and using 
the approximation above: 
 

∆ ∆ ∆
= = ≈
∆ ∆

subl subl subl
gas

subl subl

S H Hdp
dT V T V TV

 

 
Assuming an ideal gas, =gas RTV

p
 

 

 ⇒ ∆ ∆
= =subl subl

2 2
ln        p H Hdp dp p d p

dT RT dT dT RT
=  

 
This is the Clausius-Clapeyron Equation 
for liq-gas, replace ∆ subH  with ∆ vapH  
 

i.e. ∆ ∆
= =vap vap

2 2
ln        

p H Hdp pdp d p
dT RT dT dT RT

=  

 
 

The Clausius-Clapeyron equation relates the temperature dependence 
of the vapor pressure of a liquid or a solid to ∆ vapH  or 
∆ subH (respectively). 
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We can make another approximation: Assuming ∆ sublH  
independent of T,  
 

2 2

1 1

subl subl subl2 2 1
2

1 2 1

1 1 1          ln
p T

p T

H Hdp p T TdT
p R T p R T T R TT

⎛ ⎞ ⎛∆ ∆ −
= = − − =⎜ ⎟ ⎜

⎝ ⎠ ⎝
∫ ∫

1 2

H ⎞∆
⎟
⎠
 

 
This is the Integrated Clausius-Clapeyron Equation 

     (for liq-gas, replace ∆ subH  with ∆ vapH ) 
 

     i.e. ∆ ∆⎛ ⎞ ⎛ − ⎞
− =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

vap vap2 2 1

1 2 1 1 2

1 1H H T T
T T R TT

= −ln p
p R

 

 
 
In practice this is how you determine vapor pressure over a liquid or 
solid as a function of T.  
 
Clausius-Clapeyron problems have the two following forms: 
 

1. You know (T1,p1) and (T2,p2) for s-g or ℓ-g coexistence and want 
to know ∆ subH  or ∆ vapH  

2. You know (T1,p1) and ∆ subH  or ∆ vapH for s-g or ℓ-g coexistence and 
want to know (T2,p2) (coexistence). 

 
This allows you, for example, to calculate that the boiling point in 
Denver is 97°C.  
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Effect of inert gas pressure on vapor pressure over a liquid or solid  
     Total pressure p = pA + pInert 

     
       po ≡ equil. vapor pressure of 

pure A at temperature T 
 
       pA≡ equil. partial pressure of A 

in presence of inert gas 
What is pA(p)?   

 
At equilibrium, ( ) ( )µ µ=g, , , ,A A AT p T p  

 
Differentiate both sides w.r.t. p 

        
T

d dG SdT Vdp V
p
µµ

⎛ ⎞∂
= = − + ⇒ =⎜ ⎟∂⎝ ⎠

 

 

 

( ) ( )µ µµ⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞∂∂
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂
= ⇒ =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
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                                         0
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g
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p p p p

p p VV V
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Presence of inert gas increases pA. << gV V   (away from critical point) 
so the effect is small. 
 

If A is ideal gas ⇒ 
( )

= ⇒ =

′
′= =

′∫ ∫
0 0

0
0

        

        lnA

g A
A A

p pA A
p p

A

RT RT

−

V dp V dp
p p
dp pRT V dp RT V p p
p p

 

  
For example, for mercury (Hg) 
pHg = 0.2700 torr at 100°C (pure Hg) 
pHg = 0.2701 torr at 1 bar total pressure 
pHg = 0.2830 torr at 100 bar total pressure 

A (ℓ,po,T) 

A (g, po,T ) 
Inert (g,pinert) 

Pure A (g + ℓ) 
A (g, pA,T ) + 
A + Inert (g) 
 

A (ℓ,p,T) 
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Sample Problem: 
 
A new molecule (a drug), renol, has been synthesized and its phase 
diagram needs exploring. Near its triple point it is found that the 
vapor pressure over the liquid (pℓ) and over the solid (ps) are given by 
 

= − + = − +
3,010 K 3,820 Kln 13.2         ln 16.1sp p

T T
 

 
(a) Calculate the triple point temperature Ttp and pressure ptp.  

 
Set = ⇒ − + = − +

3,010 K 3,820 Kln ln         13.2 16.1sp p
T T

 

 
Solve for T ⇒ Ttp = 279 K 

⇒ ptp = 11.1 bar 
 

(b) Is renol a solid, a gas, or a liquid at (1 bar, 298 K)? 
 

Phase diagram shows it’s a gas. 
 
Must be since slopes of (s,g) 
and (ℓ,g) coexistence curves 
are always positive.  

 
 

T(K)

solid

liquid

gas

p
(bar)

11.1

1

279    298

(c) What is sublH∆ ? (approximate) 
 

Use Clausius-Clapeyron equation: 
 

( )( )

∆
= =

∆ = = =

subl
2 2

subl

ln 3,820 K

8.314 J/K-mol 3,820 K 31,760 J 31.8 kJ

s Hd p
dT T RT
H
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Another example: 
 
RDX (1,3,5-trinitro-1,3,5-triazacyclohexane) is widely used in 

military applications, including high explosives and rocket and gun 
propellants. It is also a common ingredient of commercial and military 
plastic explosives, including C-4 and Semtex, and is often employed 
for illicit or criminal purposes. It is a white solid with a melting point 
in the pure state of 204 ∞C (481 K). 

 
Designing reliable detectors for the presence of RDX requires 

having an accurate knowledge of its vapor pressure as a function of 
temperature. Literature data have been reviewed in a recent 
DOT/TSA report, “Vapor Pressure Data Base for Explosives and 
Related compounds,” by J. C. Wormhoudt (Oct. 2003). 

 
Vapor pressure data for RDX are shown in the diagram. The 

vapor pressure data are well described by the Clausius-Clapeyron 
equation to within ±95% confidence limits. Note that the vapor 
pressure of RDX at 300 K (at which, for example, an explosives 
detector at an airport security screening station would have to 
operate is only 10-11 bar. Note also that since all reported data are 
for temperatures less than 450 K the process represented by these 
data is actually sublimation rather than evaporation from the liquid 
phase. 
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