21M.380 · Music and Technology Recording Techniques & Audio Production

Dynamics & Compression

Session 10 · Wednesday, October 12, 2016

1 Student presentation (PA1)

•

2 Announcement: I want you for schlepping!

- Volunteers needed for Mon, 10/17 & Wed, 10/19 class meetings
- 2–3 volunteers at room _____, 10 minutes before start of class
- 2–3 volunteers after class (please approach me after class)

3 Review

3.1 ED1 assignment

- · How to render to a meaningful output level
 - Watch level meters that appear at rendering
 - Must not hit red zone, otherwise you'll clip!
- Submission examples

3.2 Patchbays

- Half vs. full (single) normalled vs. open (denormalled) vs. parallel vs. fully isolated
- Rule of \under Don't patch under phantom power!

3.3 Stereo recording techniques

- M/S recording technique
- Recording angle

4 Dynamic range

 $\Delta L = L_{max} - L_{min}$

 ΔL dynamic range dB L_{max} maximum signal level dB L_{min} minimum signal level dB

• Difference between 'loudest' and 'softest' sound

• Corresponds (loosely) to musical dynamics (p, mf, ff, etc.)

• Every acoustic system has its dynamic range (e.g., mic, ear, room, etc.):

- Symphony orchestra: **ff** vs. **pp**

- Human ear: absolute threshold of hearing vs. pain threshold

- Digital audio converter: full-scale vs. 1 bit

Equation 1. Dynamic range

Table 1. Dynamic range ΔL of different audio systems

Signal or system	$\Delta L/dB$
Symphony orchestra	70
Pop music	6
Human ear	130
Akg c414 xls	134
Digital audio (16 bit)	96
Digital audio (24 bit)	144

5 Dynamic range processors

Figure 1. Transfer functions of different dynamic range processors

- Different processors exist to adjust the dynamic range
- Primarily defined by their *transfer function*: Output level L_{out} as a function of input level L_{in}
- Applications & motivations:
 - To match ΔL of recording and playback environments¹
 - To make an individual track more 'mixable'
 - Ideally a tool to aid musical expression
 - Less ideally a tool to take all life out of a mix

¹ For example, it can be difficult to listen to a symphony orchestra recording with a dynamic range of 70 dB while driving on a freeway in a convertible, where your dynamic range is more likely in the single digits.

5.1 Compressor

Figure 2. Transfer function of a compressor

- Reduces dynamic range, for example to:
 - Give drums more impact
 - Add 'fader stability' to vocal track
- Ubiquituous in pop & rock
 - Not unusual to see on every input (and perhaps output) channel
 - Widely (mis)used as a tool to win the *loudness war* (Katz 2014d)
- Much more conservatively used in classical music recordings

5.2 Limiter

FIGURE 3. Transfer function of a limiter

- Limits dynamic range (no increase of L_{out} above L_{th})
- Application: prevent clipping (peak limiter: fast attack & sharp knee)

5.3 Expander

Figure 4. Transfer function of an upward expander

- Increases dynamic range
- Application: emphasize musical phrasing
- Upward vs. downward expanders

5.4 Gate

 $\ensuremath{\mathsf{Figure}}$ 5. Transfer function of a gate

- Mute signal below threshold to eliminate background noise
- Works particularly well with percussive sounds (drums)

6 Control parameters

6.1 Threshold, ratio, knee, make-up gain

Control parameters that can be determined from the transfer function:

- Threshold L_{th} above (or below) which dynamic range is affected
- Ratio R at which input signal is compressed or expanded
- Knee: hard vs. soft; typically specified in dB
- Make-up gain g: e.g., to increase overall output level after compression

$$R = \frac{\Delta L_{in}}{\Delta L_{out}}$$

 $\begin{array}{lll} R & \text{ratio} & \text{1} \\ \Delta L_{in} & \text{input level change} & \text{dB} \\ \Delta L_{out} & \text{resulting output level change} & \text{dB} \end{array}$

6.2 Attack time, release time, release delay

But the sound of a dynamic range processor is also significantly determined by its temporal behavior:

- Attack time T_a in response to input level change $L_{in} > L_{th}$
- Release time T_r in response to input level change $L_{in} < L_{th}$
- Release delay T_d (less common)
- These parameters cannot be determined from the transfer function!

Table 2. Parameters of dynamic range processors

Parameter	Symbol	Unit
Threshold	L_{th}	dB
Ratio Knee	<i>R</i>	1 dB
Make-up gain	8	dB
Attack time	T_a	ms
Release time	T_r	ms
Release delay	T_d	ms

EQUATION 2. Ratio R of a dynamic range processor

Table 3. Ratio R of dynamic range processors

Processor	R	Typical values
Compressor	> 1	2:1, 3:1, 4:1, etc.
Limiter	$\rightarrow \infty$	
Expander	< 1	1:2, 1:3, 1:4, etc.
Gate	$\rightarrow 0$	

Figure 6. Input (left) and output (right) of a compressor with attack time T_a , release time T_r , and release delay T_d all $\neq 0$ (after Katz 2014b, fig. C)

7 Compression techniques

7.1 General compression recipe

- First convince yourself (by ear & eye) that compressor does something!
- Then set threshold and finally adjust other settings to taste
- Katz (2014b, p. 93) suggests to:
 - 1. Use a high ratio (e.g., 4:1) and fast release time (e.g., 100 ms)
 - 2. Find useful threshold around the music's 'action point'
 - 3. Reduce ratio (e.g., to 1.2:1)
 - 4. Increase release time (e.g., to 250 ms)
 - 5. Listen and fine-tune attack time, release time, and ratio

7.2 Side chain manipulation

- A compressor's *side chain* includes the *envelope follower* that measures the level of the input signal (cf., figure 7).
- Several interesting ways in which side chain can be manipulated:
 - Feed with other instrument (aux in; e.g., bass 'makes room' for kick)
 - Side chain Eqing (cf., figure 8): de-essing; prevent kick drum from 'bringing down' rest of band; etc.
 - Stereo compression: link side chains of L and R inputs
 - Lookahead function: delay main against side chain (peak limiting)

7.3 Multiband compression

- Idea: Different transfer functions for different frequency bands
- Blurs border between compression and eqing
- Applications:
 - De-essing (ca. 2 kHz to 10 kHz; cf., Katz 2014b, p. 97)
 - Selective compression of individual instruments in a completed mix

7.4 Parallel compression

- Idea: Compression as a mix-in effect (cf., figure 9)
- Motivation: Compress while preserving transients (rapid signal changes)
- Recipe (Katz 2014c, p. 103):
 - Threshold: -50 dB
 - Ratio: 2.5/1
 - Attack time: very short
 - Release time: 250 ms to 350 ms

Figure 7. Side chain in a feed-forward compressor

Figure 8. Side-chain eqing (e.g., deesser)

Figure 9. Parallel compression

8 Reaper demos

8.1 How to set up a gate in Reaper

- Add new track with snare drum recording
- 2. Add gate plugin to track: FX VST: ReGate (Cockos)
- 3. Set parameters

8.2 How to set up a compressor in Reaper

- 1. Add new track with vocal recording
- 2. Add compressor plugin to track: FX > VST: ReaComp (Cockos)
- 3. Set parameters

9 Preview ED3 assignment

- Use different dynamic range processors to solve specific tasks
- Also includes some eqing as a review

References & further reading

- Izhaki, Roey (2011a). "Compressors." In: Mixing Audio. Concepts, Practices and Tools. 2nd ed. Focal Press. Chap. 16, pp. 266–330. ISBN: 978-0240522227. MIT LIBRARY: 002302617. URL: http://libproxy.mit.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=454037&site=ehost-live&ebv=EB&ppid=pp_266 (visited on 11/22/2014). Requires MIT library login (max. 1 reader at a time).
- (2011b). "Duckers." In: Mixing Audio. Concepts, Practices and Tools. 2nd ed. Focal Press. Chap. 20, pp. 370–5. ISBN: 978-0240522227. MIT LIBRARY: 002302617. URL: http://libproxy.mit.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=454037&site=ehost-live&ebv=EB&ppid=pp_370 (visited on 11/22/2014). Requires MIT library login (max. 1 reader at a time).
- (2011c). "Expanders." In: Mixing Audio. Concepts, Practices and Tools. 2nd ed. Focal Press. Chap. 19, pp. 361–9. ISBN: 978-0240522227. MIT LIBRARY: 002302617. URL: http://libproxy.mit.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=454037&site=ehost-live&ebv=EB&ppid=pp_361 (visited on 11/22/2014). Requires MIT library login (max. 1 reader at a time).
- (2011d). "Gates." In: Mixing Audio. Concepts, Practices and Tools. 2nd ed. Focal Press. Chap. 18, pp. 334-60. ISBN: 978-0240522227. МІТ LIBRARY: 002302617. URL: http://libproxy.mit.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=454037&site=ehost-live&ebv=EB&ppid=pp_334 (visited on 11/22/2014). Requires мІТ library login (max. 1 reader at a time).

- Izhaki, Roey (2011e). "Limiters." In: Mixing Audio. Concepts, Practices and Tools. 2nd ed. Focal Press. Chap. 17, pp. 331–3. ISBN: 978-0240522227.

 MIT LIBRARY: 002302617. URL: http://libproxy.mit.edu/login?url=
 http://search.ebscohost.com/login.aspx?direct=true&db=
 nlebk&AN=454037&site=ehost-live&ebv=EB&ppid=pp_331 (visited
 on 11/22/2014). Requires MIT library login (max. 1 reader at a time).
- Katz, Bob (2014a). "How to manipulate dynamic range for fun and profit. Macrodynamics, loudness range." In: *Mastering Audio. The Art and the Science*. 3rd ed. Burlington, MA: Focal Press. Chap. 5, pp. 73–9. ISBN: 978-0240818962. MIT LIBRARY: 002307049. On course reserve at the Lewis Music Library.
- (2014b). "How to manipulate dynamic range for fun and profit. Downward processors." In: Mastering Audio. The Art and the Science. 3rd ed. Burlington, MA: Focal Press. Chap. 6, pp. 81–100. ISBN: 978-0240818962. MIT LIBRARY: 002307049. On course reserve at the Lewis Music Library.
- (2014c). "How to manipulate dynamic range for fun and profit. Think forward." In: *Mastering Audio. The Art and the Science*. 3rd ed. Burlington, ма: Focal Press. Chap. 7, pp. 101–9. ISBN: 978-0240818962. міт LIBRARY: 002307049. On course reserve at the Lewis Music Library.
- (2014d). "The loudness revolution. The war is ending." In: *Mastering Audio. The Art and the Science*. 3rd ed. Burlington, ма: Focal Press. Chap. 17, pp. 241–56. ISBN: 978-0240818962. міт LIBRARY: 002307049. On course reserve at the Lewis Music Library.
- Senior, Mike (2011a). "Beyond compression." In: Mixing Secrets for the Small Studio. 1st ed. Focal Press. Chap. 10, pp. 163–70. ISBN: 978-0240815800. MIT LIBRARY: 002092991. Electronic resource. Accompanying information and sound examples: http://www.cambridge-mt.com/ms-ch10.htm.
- (2011b). "Compressing for a reason." In: Mixing Secrets for the Small Studio. 1st ed. Focal Press. Chap. 9, pp. 143–62. ISBN: 978-0240815800. MIT LIBRARY: 002092991. Electronic resource. Accompanying information and sound examples: http://www.cambridge-mt.com/ms-ch9.htm.
- (2011c). "Frequency-Selective Dynamics." In: *Mixing Secrets for the Small Studio*. 1st ed. Focal Press. Chap. 13, pp. 203–18. ISBN: 978-0240815800. MIT LIBRARY: 002092991. Electronic resource. Accompanying information and sound examples: http://www.cambridge-mt.com/ms-ch13.htm.
- (2011d). "The power of side chains." In: *Mixing Secrets for the Small Studio*. 1st ed. Focal Press. Chap. 14, pp. 219–24. ISBN: 978-0240815800. MIT LIBRARY: 002092991. Electronic resource. Accompanying information and sound examples: http://www.cambridge-mt.com/ms-ch14.htm.

MIT OpenCourseWa	re
https://ocw.mit.edu/	

21M.380 Music and Technology: Recording Techniques and Audio Production Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.