18.310 Homework 8 Solutions

Due Monday October 28th at 6PM

Instructions: Remember to submit a separate PDF for each question. Do not forget to include a list of your collaborators or to state that you worked on your own.

1. What is the optimum solution of the following linear program:

Max
$$5x_1 + 7x_2 + 9x_3 + 11x_4 + 13x_5$$

subject to:
 $15x_1 + 28x_2 + 18x_3 + 44x_4 + 65x_5 = 2010$
 $x_i \ge 0$ $i = 1, \dots, 5.$

Write the dual linear program, and find an optimum solution to the dual. What are the optimum values to the primal and dual linear programs?

Solution: The dual of:

$$\begin{array}{ll} \mathrm{Max} & c^T x \\ \mathrm{s. \ t.} & a^T x = b \\ & x \geq 0 \end{array}$$

is

$$\begin{aligned} & \operatorname{Min}_y \quad by \\ & \text{s.t.} \qquad \qquad ya \geq c, \end{aligned}$$

and in this case, it is:

$$\begin{array}{lll} \mathrm{Min}_y & 2010y\\ \mathrm{s.t.} & 15y \geq 5,\\ & 28y \geq 7\\ & 18y \geq 9\\ & 44y \geq 11\\ & 65y \geq 13 \end{array}$$

The dual optimum solution is thus $y^* = \max_i \frac{c_i}{a_i} = \frac{1}{2}$, and the value of the solution is $by^* = 1005$. Note that by strong duality, the primal solution must satisfy $c^T x^* = 1005$. By complementary slackness, since only the inequality $18y \ge 9$ is satisfied at equality by y^* , we have that only x_3^* can be nonzero. This means $9x_3^* = 1005$ and the solution is $x^* = (0, 0, 335/3, 0, 0)$.

2. Solve the following LP using the simplex method, showing your tableau and choice of pivot clearly at each step, and writing the final answer and objective value clearly.

maximize
$$3x_1 + 2x_2 + 4x_3$$

subject to $x_1 + x_2 + 2x_3 \le 4$
 $2x_1 + 3x_3 \le 5$
 $2x_1 + x_2 + 3x_3 \le 7$
 $x_1, x_2, x_3 \ge 0$

(You will need to introduce some slack variables to get the LP into the required form.)

Solution: By adding three slack variables, to get the problem into the standard form, we get a basic feasible solution in the new variables and the following tableau:

Γ	z	x_1	x_2	x_3	s_1	s_2	s_3	<i>b</i>]
[-1	3	2	4	0	0	0	0
	0	1	1	2	1	0	0	4
	0	2	0	3	0	1	0	5
L	0	2	1	3	0	0	1	7

The current basis is (s_1, s_2, s_3) with corresponding bfs (0, 0, 0, 4, 5, 7). We choose to have x_1 enter the basis as its reduced cost coefficient is positive (3 > 0). The min-ratio test $\min\{\frac{4}{1}, \frac{5}{2}, \frac{7}{2}\}$ shows that we will pivot on the second row and s_2 will leave the basis. After pivoting, we obtain:

Γ	- <i>z</i>	x_1	x_2	x_3	s_1	s_2	s_3	b -	1
	-1	0	2	-1/2	0	-3/2	0	-15/2	
	0	0	1	1/2	1	-1/2	0	3/2	.
	0	1	0	3/2	0	1/2	0	5/2	
	0	0	1	0	0	-1	1	2	

Our new basis is (s_1, x_1, s_3) with bfs (5/2, 0, 0, 3/2, 0, 2) and objective value 15/2. The only variable with positive cost coefficient is x_2 , so we will have x_2 enter the basis. The min-ratio test $\min\{\frac{3}{2}, 2\} = \frac{3}{2}$ shows that we will pivot on the first row (see box above for pivot element). We get:

- z	x_1	x_2	x_3	s_1	s_2	s_3	b -]
-1	0	0	-3/2	-2	-1/2	0	-21/2	
0	0	1	1/2	1	-1/2	0	3/2	.
0	1	0	3/2	0	1/2	0	5/2	
0	0	0	1/2	-1	-1/2	1	1/2	

Our new basis is (x_2, x_1, s_3) with bfs (5/2, 3/2, 0, 0, 0, 1/2) and objective function value 21/2. As all reduced cost coefficients are nonpositive, the current bfs is an optimum solution. Forgetting the slack variables, we have the optimum solution $x_1 = \frac{5}{2}$, $x_2 = \frac{3}{2}$ and $x_3 = 0$. As a sanity check, we verify that this solution satisfies all the constraints and has value 21/2.

3. Using strong duality for linear programming, prove the following.

Theorem. $Ax = b, x \ge 0$ has no solution if and only if there exists y with $A^T y \ge 0$ and $b^T y < 0$.

Solution: For the implication to the left, suppose there is such an x and such a y. Then $0 > y^T b = y^T A x = x^T A^T y \ge 0$, which is a contradiction. For the reverse implication consider the problem:

Max 0

subject to:

Ax = b $x \ge 0,$

and its dual

Min $b^T y$

subject to:

$$A^T y \geq 0.$$

Observe that the dual is feasible (since y = 0 is feasible). If the primal is not feasible, then the dual must be unbounded and in particular, this means that we can find a ysuch that $A^T y \ge 0$ and $b^T y < 0$. This shows the reverse direction. (Observe that by scaling y, we can have $b^T y$ take any negative value while y remains dual feasible.

4. Consider the following flow problem instance, with source s and sink t:

Find a maximum flow (show your augmenting paths), and also exhibit an s-t cut of the same value.

Solution:NOTE :It would be neater to write the solution as a series of diagrams, but we'll skip this. For now, here are the augmenting paths and the cut. First take the path s, 2, 3, t and push 6 through this path, giving the flow:

	(s,2)	(s,3)	(2,3)	(2,4)	(3,5)	(3,t)	(4,t)	(5,2)	(5,t)
x	6	0	6	0	0	6	0	0	0
u	6	5	7	1	3	7	8	2	2

Next take the path s, 3, 2, 4, t and push 1 units through it, giving the flow:

	(s,2)	(s,3)	(2,3)	(2, 4)	(3, 5)	(3,t)	(4,t)	(5,2)	(5,t)
x	6	1	5	1	0	6	1	0	0
u	6	5	7	1	3	7	8	2	2

	(s,2)	(s,3)	(2,3)	(2,4)	(3, 5)	(3,t)	(4,t)	(5,2)	(5,t)
x	6	2	5	1	0	7	1	0	0
u	6	5	7	1	3	7	8	2	2

Take the path s, 3, t and push one unit through it.

And finally take the path s, 3, 5, t and push 2 units through it.

	(s,2)	(s,3)	(2,3)	(2,4)	(3,5)	(3,t)	(4,t)	(5,2)	(5,t)
x	6	4	5	1	4	7	1	0	4
u	6	5	7	1	3	7	8	2	2

This results in a flow of 10, which matches the minimum cut value corresponding to the cut $S = \{s, 2, 3, 5\}$ (the total capacity of the arcs (2, 4), (3, t), (5, t) is indeed 10). S was obtained by looking at the vertices reachable from s in the residual graph.

18.310 Principles of Discrete Applied Mathematics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.