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Today we’re going to discuss Eulerian numbers. 

Definition 1 

Let Ank be the number of permutations w ∈ Sn with exactly k descents: des(w ) = k . 

Notation is sometimes shifted by one index, but this is not that significant. 

Fact 2 

It’s important not to confuse these with Euler numbers! 

There is a nice bijection between permutations in Sn and increasing binary trees on n nodes. Remember that one 

interpretation of Catalan numbers is the number of binary trees! But this time, we’re going to label the vertices by numbers 

from 1 to n such that they increase as we go away from the root. 

Example 3 

Start with w = (4, 2, 8, 5, 1, 3, 9, 10, 6, 7). 

At the root of this tree, we use 1, and the left branch of the tree contains (4, 2, 8, 5) while the right branch contains 

everything else. Repeat this process by finding the minimal element in each group, and partition from there! 

So each node has at most 1 left child (the smallest element on its left) and at most 1 right child (the smallest element on 

its right), which means it is indeed a binary tree. The nodes are labeled 1 through n, and they indeed increase downwards. 

Fact 4 

This is a bijection, since we can just reverse the process by placing 1 in our permutation, putting the left elements to 

its left and right elements to its right, and so on. 

How does this help us say things about Eulerian numbers? 
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Theorem 5 

Ank is the number of increasing binary trees on n nodes with k left edges. 

Proof. Think about the bijection. When we go from the permutation to the tree w → Tw , any left edge i → j means we 

have 

w = (· · · j · · · )i · · · , 

where j is the minimal element in the parentheses. So i will have a descent! This means that the descents correspond to 

the vertices with a left child, as desired. 

In a sense, Eulerian numbers look a lot like binomial coeÿcients. 

Definition 6 

Construct the Eulerian triangle so that the bth entry in the ath row is Aa,b−1. The first few rows look like 

1 

1 1 

1 4 1 

1 11 11 1 

1 26 66 26 1 

This is a lot like Pascal’s triangle, but the weights are di˙erent. If we go along the kth diagonal from either direction, 

the weight is k! For example, 26 = 4 · 1 + 2 · 11. 

Theorem 7 (Recurrence relation for Eulerian numbers) 

For all n, k , 

An+1,k = (n − k + 1)An,k−1 + (k + 1)An,k . 

This is not very hard to prove in terms of binary trees or the original descent definition. 

Proof. Suppose we have a binary tree with n nodes: we want to add an extra node. We can add an extra leaf with label 

n + 1: it can be checked that the number of ways to add a left edge is n − k + 1, and the number of ways to add a right 

edge is k + 1. 

Alternatively, we can see this by looking at the permutations: if we have a permutation w ∈ Sn and we want to add 

n + 1. There are n + 1 ways to add it: adding it in one of the k descent slots or at the beginning does not add a descent, 

and k + 1 of these work, while adding it in an ascent slot or at the end adds a descent, which is the other k − n + 1 

ways. 

Remember that last time, we also discussed the two kinds of Stirling numbers. c(n, k), the signless Stirling numbers of 

the first kind, is the number of permutations w ∈ Sn with k cycles (including fixed points). Make a Pascal’s triangle such 

that the bth entry in the ath row is c(a, b). Then this triangle looks like 
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1 

1 1 

2 3 1 

6 11 6 1 

Notice that we no longer have the symmetry between k cycles and n − k cycles. But we still have a recurrence relation 

with weights! 

Proposition 8 (Recurrence relation for c(n, k)) 

For all n, k , 

c(n + 1, k) = c(n, k − 1) + nc(n, k). 

Meanwhile, S(n, k), the Stirling numbers of the second kind, are the number of set-partitions of [n] into k groups. If we 

construct a similar triangle, it looks like 

1 

1 1 

1 3 1 

1 7 6 1 

1 15 25 10 1 

It is a bit harder to describe the weights here: they are 1 for all edges sloping down and to the right, and they increase 

starting from 1 in each row for edges sloping down and to the left. 

Proposition 9 (Recurrence relation for S(n, k)) 

For all n, k , 

S(n + 1, k) = S(n, k − 1) + kS(n, k). 

As an exercise, we should prove these two relations! 

There are many more permutation statistics, but we’ll move on to the next topic for now: posets and lattices! 

Definition 10 

A lattice L is a special kind of poset: it has two binary operations meet ∧ and join ∨. x ∧ y is the unique maximal 

element of L which is less than or equal to both x and y , and x ∨ y is the unique minimal element of L such that it is 

greater than or equal to both x and y . 

Here’s an example of a lattice: 
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x y 

x ∨ y 

x ∧ y 

However, here’s an example of something that is not a lattice, since x and y have no x ∧ y and two di˙erent potential 

x ∨ y s: 

x y 

The usual definition doesn’t actually use posets though: it’s more abstract. 

Definition 11 (Axiomatic definition of a lattice) 

A lattice is a set L with binary operations ∧ and ∨ such that 

• ∧ and ∨ are commutative and associative, so x ∧ y = y ∧ x , and x ∨ y = y ∨ x . Also, x ∧ (y ∧ z) = (x ∧ y ) ∧ z , 

and similar for ∨. 
• x ∧ x = x ∨ x = x . 
• (Absorption law) x ∧ (x ∨ y ) = x = x ∨ (x ∧ y ). 
• x ∧ y = x if and only if x ∨ y = y . 

Note that addition and multiplication do not follow these laws. 

Fact 12 

Given the axiomatic operations and a set L, we can reconstruct a poset, and given any lattice, it and its operations ∧ 

and ∨ satisfy the axioms! In particular, x ≤ y happens if and only if x ∧ y = x , which is the same as x ∨ y = y . 

Some time in the future, we will discuss boolean lattices, partition lattices, and Young lattices! 
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