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Recall that last lecture, we formulated the Jacobi Triple Product identity, which can be written equivalently in the following 

form: 
∞ Y Y X Y 

−1 r r (r+1)/2 (1 + zq n) (1 + z q n−1) = z q 
1 
. 

1 − qn 
n≥1 n≥1 r =−∞ n≥1 

Let’s do a combinatorial proof of this identity! Each of the products has a combinatorial interpretation in terms of certain 

partitions. 

a Proof. First of all, the first product’s coeÿcient of z is X 
|µ| q , 

µ partition 
with a distinct parts 

and the second product’s coeÿcient of z−b is X 
|ν|−b| q , 

ν partition 
with b distinct parts 

since the power is n − 1, not n. Finally, the product on the right is the usual generating function for all partitions: somehow 

we want to combine di˙erent partitions together. So we want a bijection between 

(a, b, µ, ν) → (r, λ). 

where µ has a distinct parts and ν has b distinct parts. We also need to make sure the monomials match up: looking at 
r (r + 1) 

powers of z , a − b = r , and looking at powers of q, |µ| + |ν| − b = + |λ| . 
2 

Since µ and ν have distinct parts, we can represent them with shifted Young diagrams instead! For example, if 

µ = (7, 6, 4, 3, 1) and ν = (6, 5, 3), then our Young diagrams look like 

µ̃ = · 
· 
· 
· 
· 

, ν̃ = · 
· 
· 

. 
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We’re going to transpose ν̃ and remove its b diagonal boxes: 

ν̃ 0 = 

Now, take µ̃ and ν̃ 0 and glue their last dots together! This now looks like 

· 
· 
· 
· 
· 

. 

With this, we can now chop o˙ the first two columns o˙: our partition λ is now 

λ = = (5, 5, 4, 4, 3, 3, 3, 2). 

We claim that this is the bijection that we want! The number of columns we chop o˙ is a − b = r , and counting the total 

number of boxes, we started with |µ| + |ν| boxes, but then we removed all b diagonal boxes from ν: this yields the left 

hand side. That left us with |λ| + 1 + 2 + · · · + r boxes, which is the desired right hand side! 

We might not be convinced: what if a < b? We have to make a small edit, and we’ll do that by construction. If 

µ = (5, 4, 2) and ν = (9, 8, 7, 4, 3, 1), then our shifted Young diagrams look like 

µ̃ = · 
· 
· 

, ν̃ = · 
· 
· 
· 
· 
· 

. 
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Transposing and removing boxes, we have 

and after gluing, our shape is 

ν̃ 0 = 

which yields (after chopping) 

λ = = (8, 8, 7, 5, 3, 3). 

We need to make sure the identity still works: the total number of boxes here is |µ| + |ν| − b, but now the size of the 

triangle is b − a − 1 (since our triangle is now below the dots)! So we have a small triangle that we chopped o˙, which is 
(−r −1)(−r ) r (r +1) = squares, so the same identity holds. 2 2 

Why is this a bijection? We need to know how to invert this from λ and r : attach a small triangle to the left or top of 

λ based on the sign of r , and then we chop along the diagonal. This gives us µ̃ and ν̃ 0 , which can give us µ and ν, which 

tells us our original partitions and a and b as well! 

Let’s move on to the next topic of this class. We’ve been talking about Young diagrams and partitions a lot so far - in 

this second half, we’ll start to discuss graphs, networks, and trees! (Graphs are objects with vertices and edges.) 

Definition 1 

A labeled tree is a connected graph on n nodes with no cycles, where the nodes are labeled 1, 2, · · · , n. Unlabeled 
trees are the analogous object where the nodes are not labeled. 

Example 2 

There are 3 labeled trees on 3 vertices: put 1, 2, 3 at the vertices of an equilateral triangle, and remove one of the 
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edges. However, there is only 1 unlabeled tree on 3 vertices: it is a path. 

Turns out we have an explicit formula for the number of trees: 

Theorem 3 (Cayley’s formula) 

The number of labeled trees on n nodes is nn−2 . 

n−2 These numbers n also appear pretty often! This is probably the next most famous set of numbers after Catalan 

numbers, and there are many combinatorial interpretations. 

Fact 4 

In mathematics, there’s a law that mathematical formulas are never named after the person who discovered it. Cayley 

wrote a paper in 1889, but the same result was given by Borchord in 1860 and Sylvester in 1857. 

Cayley didn’t actually give a complete proof: it’s not a very trivial formula, but Professor Postnikov wants to show his 

favorite proof, which is probably the shortest one! 

Proof by Rényi, 1967. We’re going to use induction (?!?!). It’s kind of hard to get nn−2 from smaller versions of itself, 

though... let’s do a generalization! Let’s prove the more general result: 

Definition 5 
T deg(1)−1 deg(2)−1 deg(n)−1 Define the weight of a tree T to be a monomial x ≡ x x · · · xn . 1 2 

Notice that leaves have exponent 0. Now define X 
Fn(x1, · · · , xn) = x T . 

labeled trees on 
n vertices 

)n−2 We claim that this quantity is equal to (x1 + · · · xn , and notice that Cayley’s formula follows by setting all xi = 1. The 

idea is that the inductive hypothesis is now stronger, so we can actually use induction! Define Rn = Fn − (x1 + · · · + xn)n−2; 

our goal is to show that Rn = 0. 

This is easy to check for base cases n = 1, 2. Now let’s make some observations: 

• Rn is a polynomial in x1, · · · , xn of degree ≤ n − 2. This is because the second term has degree n − 2, and every 

monomial has degree n − 2: there are n − 1 edges, and each one contributes to 2 exponents (the endpoints of the 
T edge), and the −1s in the definition of x subtract n, for a total degree of 2(n − 1) − n = n − 2. 

• For any i = 1, 2, · · · , n, if we initialize xi = 0, Rn evaluates to 0. To prove this, we can assume i = n by symmetry: 
T set xn = 0, and now all x die except for those where the degree of n is 1: that is, n is a leaf! So Fn evaluated at 

xn = 0 is X X 
T T 0 x = x (x1 + x2 + · · · + xn−1) 

T :n leaf T 0 with n−1 nodes 

since there are n − 1 ways to connect n to one of the other vertices. By the induction hypothesis, this is 

Fn−1(x1 + · · · + xn−1), so Rn|xn =0 = Rn−1(x1 + · · · + xn−1) = 0. 

• But now we’re done: if f (x1, · · · , xn) is a polynomial on n variables of degree at most n − 1, and x1, x2, · · · , xn are 
all factors, then the polynomial must be 0. 

This almost feels like cheating! We used almost no properties of trees at all. We’ll talk a bit more about this next time! 
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