
   

              
             

  

18.212 Problem Set 1 

Turn in as many problems as you want. (You don’t need to turn in 
all problems to get a perfect grade in the class. Around 6 problems 
should be enough.) 

Problem 1. In class, we sketched a proof of the formula for the Catalan � � 
1 2n+1 number Cn = using cyclic shifts of sequences of ±1’s. The 

2n+1 n 
proof is based on the following two claims. Prove these claims. 

Let (e1, . . . , e2n+1) be a sequence such that such that ei ∈ {1, −1}, 
#{i | ei = 1} = n, and #{i | ei = −1} = n + 1. 

0 

(1) All 2n+1 cyclic shifts (ei, . . . , e2n+1, e1, . . . , ei−1), for i = 1, . . . , 2n+ 
1, are different from each other. 

2n+1) among these 2n + 1 shifts 

1 + · 0 

0 , e , . . . 1 (2) Exactly one cyclic shift (e 
0 satisfies e ≥ 0, for j = 1, . . . , 2n. · · + e j 

Problem 2. Consider the random walk of a man on the integer line 
Z such that, at each step, that the probability to go from position i to 
position i + 1 is p, and the probability to go from i to i − 1 is 1 − p. 
The man “falls off the cliff” if he reaches the position 0. 

Suppose that the man starts at the initial position i0 ≥ 1. Find the 
probability that he falls off the cliff. 

Problem 3. The same setup as in the previous problem. Find the 
probability that the man starting at position i0 falls off the cliff after 
exactly m steps. (Hint: Use the reflection principle.) 

Problem 4. Prove that a permutation is queue-sortable if and only if 
it is 321-avoiding. 

Problem 5. Prove that a permutation is stack-sortable if and only if 
it is 231-avoiding. 

Problem 6. Find a bijection between 321-avoiding permutations of 
size n and 231-avoiding permutations of size n. 
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Problem 7. Find an expression for the number of permutations w of 
size n such that w is both 321-avoiding and 3412-avoiding. 

(Hint: Calculate the number of such permutations for small values 
of n, then guess the answer.) 

Problem 8. Find an expression for the number of permutations w of 
size n such that w is both 231-avoiding and 4321-avoiding. 

Problem 9. In class, we proved part (1) of Schensted’s theorem. Prove 
part (2) of this theorem: 

If the Schensted correspondence maps a permutation w to a pair 
(P, Q) of standard Young tableaux of the same shape λ, then the size 
of a largest decreasing subsequence in w equals the number of nonzero 
parts in partition λ (i.e., the number of rows of its Young diagram). 

Problem 10. Fix two positive integers m and n. Let w be a permuta-
tion of size m ·n+1. Prove that w either has an increasing subsequence 
of size m + 1 or a decreasing subsequence of size n + 1. 

(Hint: You can use properties of Schented correspondence. There is 
also a direct proof based on the pigenhole principle.) 

Problem 11. Find an explicit expression for the number of permuta-
tions w of size m·n such that w does not have an increasing subsequence 
of size m + 1 nor a decreasing subsequence of size n + 1. 

Problem 12. Prove the “baby hook-length formula”: 

The number of linear extensions of the poset whose Hasse diagram is Q 
a rooted tree T on n vertices equals n!/ v∈T h(v), where the product 
is over all vertices v of the tree, and the “hook-length” h(v) equals the 
size of the branch of T growing from vertex v. 

Problem 13. For positive integers n1, . . . , nm and n = n1 + · · · + nm, 
the q-multinomial coefficient is defined as � � 

n [n]q! 
:= . 

n1, . . . , nm q [n1]q! · · · [nm]q! 

2



Show that � � X n inv(w) = q , 
n1, . . . , nm q w 

where the sum is over all permutations w of the multset {1n1 , 2n2 , . . . ,mnm }, 
and inv(w) is the number of inversions in w. Here in denotes i, . . . , i 
(repeated n times). 

Problem 14. Prove the identity for q-binomial coefficients � � � � � � X 2n 
n

k2 n n 
= q 

n k k 
q q q k=0 

(Hint: Use the interpretation of q-binomial coefficients in terms of 
Young diagrams, and try to subdivide a Young diagram into several 
pieces to prove the identity.) 

Problem 15. Prove the following noncommutative version of binomial 
theorem. 

Let q be a parameter, and let x, y be two noncommuting variables 
that satisfy the relation 

yx = qxy. 
We assume that q commutes with both x and y, i.e., qx = xq and 
qy = yq. Show that 

n � � X n k n−k (x + y)n = x y . 
k 

q k=0 

Bonus Problems 

Problem 16. Show that the two statistics inv(w) (the number of in-
versions) and maj(w) (the major index) on permutations w ∈ Sn are 
equidistributed. 

Problem 17. An exceedance in a permutation w ∈ Sn is an index 
i ∈ {1, . . . , n} such that w(i) > i. Similarly, a weak exceedance in a 
permutation w ∈ Sn is an index i ∈ {1, . . . , n} such that w(i) ≥ i. 
Let exc(w) be the number of exceedances and wexc(w) be the number 
of weak exceedances in a permutation w. Prove that the statistics 
exc(w) and wexc(w) − 1 on permutations w ∈ Sn (for n ≥ 1) are 
equidistributed. 
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Problem 18. Prove that the number of set-partitions π of the set 
[n] := {1, . . . , n} such that, for any i = 1, . . . , n − 1, the consecutive 
numbers i and i + 1 do not belong to the same block of π equals the 
number of set-partitions of the set [n − 1]. 

Problem 19. For 1 ≤ k ≤ n/2, find a bijection f between k-element 
subsets of {1, . . . , n} and (n − k)-element subsets of {1, . . . , n} such 
that f(I) ⊇ I, for any k-element subset I. 

Problem 20. We say that a pair (i, j), 1 ≤ i < j ≤ n, is an odd-length 
inversion of a permutation w ∈ Sn if wi > wj and j − i is odd. Let 
inv(w) be the number of all inversions in w and oinv(w) be the number 
of odd-length invesions in w. Prove the identity 

n X Y 
(−1)inv(w) oinv(w) bi/2c) x = (1 + (−1)i−1 x 

w∈Sn i=2 
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