
   18.212 Problem Set 2 

Problem 1. Show that the number of non-crossing partitions of the 
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set {1, . . . , n} equals the Catalan number Cn = . (A bijective 
n+1 n 

proof is preferable. For example, you can use the fact that Cn is equal 
to the number of Dyck paths with 2n steps.) 

Problem 2. (a) Prove the recurrence relation for the signless Stirling 
numbers of the first kind 

c(n + 1, k) = n c(n, k) + c(n, k − 1). 

(b) Prove the recurrence relation for the Stirling numbers of the 
second kind: 

S(n + 1, k) = k S(n, k) + S(n, k − 1). 

Problem 3. The Bell number B(n) is the total number of partitions 
of an n element set, i.e., B(n) = S(n, 1) + S(n, 2) + · · · + S(n, n). 
Show that the Bell numbers can be calculated using the Bell triangle: 
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15 20 27 37 52 
. . . . . . . . . . . . . . . 

In this triangle, the first number in each row (except the first row) 
equals the last number in the previous row; and any other number 
equals the sum of the two numbers to the left and above it. The Bell 
numbers B(0) = 1, B(1) = 1, B(2) = 2, B(3) = 5, B(4) = 15, B(5) = 
52, . . . appear as the first entries (and also the last entries) in rows of 
this triangle. 

Problem 4. Show that the Bell number B(n) is given by 
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B(n) = . 
e k! 
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Problem 5. In class, we mentioned two ways to define a lattice. 
(I) A set L with two binary operation called “meet” ∨ and “join” ∧ 

that satisfy several axioms. 
(II) A poset P such that, for any two elements x, y ∈ P , there is a 

unique minimal element u such that u ≥ x and u ≥ y, and a unique 
maximal element v such that v ≤ x and v ≤ y. 
Show that these two defintions of lattices are equivalent. 

Problem 6. Let L be a finite distributive lattice. Let P be the poset 
formed by all join-irreducible elements of L. Use axioms of distributive 
lattices to show that L is isomorphic to J(P ). 

Problem 7. Let P be a finite poset. Prove Dilworth’s theorem that 
claims that the maximal size M(P ) of an anti-chain in P equals the 
minimal number m(P ) of disjoint chains (not necessarily saturated) 
that cover all elements of P . 

Problem 8. (a) Show that the Fibonacci number Fn+1 equals the 
number of compositions of n with all parts equal to 1 or 2, that is, the 
number of ordered sequences c1 . . . cl such that c1 + · · · + cl = n and all 
ci ∈ {1, 2}. For example, 

F6 = #{11111, 1112, 1121, 1211, 2111, 122, 212, 221} = 8. 

(b) In class, we gave a recursive construction of the differential poset 
F called the Fibonacci lattice. Give a nonrecursive description of F as 
a certain order relation on compositions with parts equal to 1 or 2. 

(c) Prove that F is indeed a lattice. 

Problem 9. Let Wn be the number of walks with 2n steps on the Hasse 
diagram of the Young’s lattice Y that start and end at the minimal 
element 0̂ = (0). (The walks can have up and down steps in any 
order.) 
For example, W2 = 3, because there are 3 walks with 4 steps: 

(0) → (1) → (2) → (1) → (0) 
(0) → (1) → (1, 1) → (1) → (0) 
(0) → (1) → (0) → (1) → (0) 

Show that Wn equals the number of perfect matchings in the com-
plete graph K2n. Find a closed formula for Wn. 
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Problem 10. Let X and D be two operators that act on polynomials 
f(x) as follows: 

X : f(x) 7→ xf(x) and D : f(x) 7→ f 0(x). 

For n ≥ 0, define the polynomials fn(x) := (X + D)n(1). For example, 
f0 = 1, f1 = x, f2 = x2 + 1, f3 = x3 + 3x. Calculate the constant term 
fn(0) of the polynomial fn. 

Problem 11. Fix positive integers k and l. Define the weight function 
w(x) on boxes x = (i, j) of the k × l rectangular Young diagram by 

w((i, j)) := (i − j + l)(j − i + k), 

for i ∈ {1, . . . , k}, j ∈ {1, . . . , l}. 
Show that, for any Young diagram λ that fits inside the k × l rec-

tangle, we have X X 
w(x) − w(y) = k · l − 2 |λ|. 

x∈Add(λ) y∈Remove(λ) 

Here Add(λ) is the set of all boxes of the k × l rectangle that can be 
added to the Young diagram λ; and Remove(λ) is the set of all boxes 
that can be removed from λ. 

Problem 12. Show that the poset J(J([2] × [n])) is unimodal. (This 
is the poset of all shifted Young diagrams that fit inside the shifted 
shape (n, n − 1, . . . , 1) ordered by containement.) 

Problem 13. Find a closed formula for the number of saturated chains 
from the minimal element 0̂ to the maximal element 1̂ in the partition 
lattice Πn. 

Problem 14. Let NCn be the subposet of the partition lattice Πn 

formed by all non-crossing partitions of the set {1, . . . , n}. The poset 
NCn is called the lattice of non-crossing partitions. 
Find a closed formula for the number of saturated chains from the 

minimal element 0̂ to the maximal element 1̂ in the poset NCn. 

Problem 15. Find a bijection between partitions of n with all odd 
parts and partitions of n with all distinct parts. 
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Problem 16. Prove that the number of partitions of n with all distinct 
and odd parts equals the number of self-conjugate partitions of n, i.e., 
partitions λ such that λ0 = λ. 
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