18.212: Algebraic Combinatorics

Andrew Lin

Spring 2019

This class is being taught by Professor Postnikov.

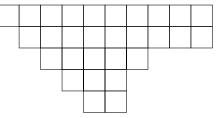
February 20, 2019

Recall that we discussed Hasse diagrams of posets, and we found that the number of such diagrams (corresponding to linear extensions) for rooted trees is

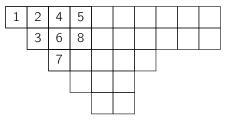
$$\operatorname{ext}(T) = \frac{n!}{\prod_{a \in T} h(a)},$$

where h(a) is the number of nodes in or downstream of a.

Now let's talk about the concept of "shifted Young diagrams." Instead of left-justifying, we can have diagrams like



which corresponds to a partition $\lambda = (10, 9, 5, 3, 2)$. This now gives the number of ways to partition a number *n* into **distinct** parts! So now we can fill this in the same way: numbers still increase by row and by column:



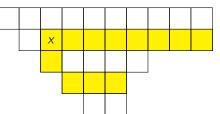
Theorem 1 (Thrall, 1952)

The number of shifted Young tableaux with shifted shape λ with *n* boxes is similarly

$$\frac{n!}{\prod_{a\in\lambda}h(a)}$$

where h(a), the hook length, now includes a "broken leg."

For example, here's a hook with a broken leg:



Basically, if the hook reaches the left staircase (not the bottom or the right part), it bends over and continues.

The proof of this is similar with the idea of a "hook walk," and it was given by Sagan in 1980.

So the point is that there is a nice number for the number of linear extensions in some posets.

It's time to move on to q-analogs! This stands for both a variable q and for "quantum." The idea is that we can have classical objects and quantum objects, and as we take q = 1, we get the classical limit. For example, Planck's constant gives $q = e^{\hbar}$, and as we take $\hbar \rightarrow 0$, we basically get q = 1.

What are some other examples of this?

Classical	Quantum
n	$[n]_q \equiv [n] = 1 + q + q^2 + \dots + q^{n-1} = \frac{1-q^n}{1-q}$
$n! = 1 \cdot 2 \cdot \cdot \cdot n$	

So let's look a bit more carefully at what this factorial actually leads to. Binomial coefficients depend on factorials as well!

Classical	Quantum
$\binom{n}{k}$	$\begin{bmatrix} n \\ k \end{bmatrix}_{q} \equiv \begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]_{q!}}{[k]_{q!}[n-k]_{q!}}$

Example 2

In normal numbers, $\binom{4}{2} = 6$. But for the *q*-factorial,

$$\begin{bmatrix} 4\\2 \end{bmatrix}_q = \frac{[4] \cdot [3]}{[1] \cdot [2]} = \frac{(1+q+q^2+q^3)(1+q+q^2)}{(1+q)} = (1+q^2)(1+q+q^2) = 1+q+2q^2+q^3+q^4.$$

Are there any observations we can make here? If we do some more bashing, we can find the following:

- $\begin{bmatrix} n \\ k \end{bmatrix}_q$ is a polynomial in q of the form $a_0 + a_1q + \cdots + a_mq^m$.
- The coefficients *a_i* are all positive integers. These are actually called the Gaussian coefficients.
- The coefficients are symmetric or **palindromic**: writing them backwards gives back the same thing.
- The coefficients first increase and then decrease: $a_0 \leq a_1 \leq \cdots \leq a_{\lfloor m/2 \rfloor} \geq \cdots \geq a_m$.

Recall that normal coefficients form a Pascal's triangle. Do we have a similar thing here?

$$n = 0$$
:
1

 $n = 1$:
1

 $n = 2$:
1

 $n = 3$:
1

 $n = 3$:
1

 $n = 4$:
1

In normal Pascal's triangle, we have

$$\binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{r+1}.$$

Turns out something similar occurs here! Notice that each entry of the q-Pascal's triangle is a sum of the two things above it, but one of them is multiplied by a factor of q or something like it.

Proposition 3 (q-Pascal's recurrence relation)

For any n, k,

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{bmatrix} n-1 \\ k \end{bmatrix}_q + q^{n-k} \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q.$$

Proof. We just write out the expressions as factorials:

$$\binom{n-1}{k}_{q} + q^{n-k} \binom{n-1}{k-1}_{q} = \frac{[n-1]!}{[k]![n-k-1]!} + q^{n-k} \frac{[n-1]!}{[k-1]![n-k]!}$$

We can combine common terms:

$$= \frac{[n-1]!}{[k!][n-k]!}([n-k]+q^{n-k}[k])$$

and now note that $[n-k] = 1 + q + q^2 + \cdots + q^{n-k-1}$, and $q^{n-k}[k] = q^{n-k} + \cdots + q^k$. So these work out to just [n], and this gives

$$=\frac{[n-1]!}{[k!][n-k]!}[n] = \begin{bmatrix} n\\k \end{bmatrix}_q$$

as desired.

It's time to formulate the combinatorial interpretation for these now! Let λ be a Young diagram, and let $\lambda \subseteq k \times (n-k)$ mean that the Standard (straight) Young diagram fits inside a k by n-k rectangle. So there are at most k nonzero parts, and each one is at most n-k. In other words,

$$\lambda_1 \geq \lambda_2 \geq \cdots \lambda_k \geq 0.$$

First of all, the number of standard Young diagrams that fits in here is $\binom{n}{k}$, because we're doing a lattice walk from the bottom left to top right corner!

Theorem 4

For any n, k,

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \sum_{\lambda \subseteq k \times (n-k)} q^{|\lambda|}.$$

For example, for n = 4, k = 2, there are 6 possible Young diagrams. 1 of them has 0 squares, 1 of them has 1 square, 2 of them have 2 squares, 1 of them has 3 squares, and 1 of them has 4 squares!

Note that this immediately implies the first three observations! This shows that the degree of $\begin{bmatrix} n \\ k \end{bmatrix}_q$ is k(n-k), and palindromicity comes by taking the complement of the shape for any Young diagram.

There's an interesting way to prove the theorem, but instead, there's always the brute-force method, which is to use induction.

Proof by induction. Base case is not hard to prove. Now, we check the *q*-Pascal's recurrence for the right hand side. Look at the first row of the Young diagram. We know $\lambda_1 \leq n - k$.

- Otherwise, $\lambda_1 = n k$, which means the first row is completely filled. Then if we delete the first row, we get λ inside a k 1 by n k rectangle, and each of these is like an original Young diagram, but we need to add back n k squares. That's why this contributes a factor of $q^{n-k} {n-1 \choose k-1}$, and we're done!

This doesn't really explain what Young diagrams are coming from, though. Next time, we'll give a more algebraic proof that will explain the source!

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

18.212 Algebraic Combinatorics Spring 2019

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.