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Recall that we discussed Hasse diagrams of posets, and we found that the number of such diagrams (corresponding to 

linear extensions) for rooted trees is 

ext(T ) = Q n! , 
a∈T h(a) 

where h(a) is the number of nodes in or downstream of a. 

Now let’s talk about the concept of “shifted Young diagrams.” Instead of left-justifying, we can have diagrams like 

which corresponds to a partition λ = (10, 9, 5, 3, 2). This now gives the number of ways to partition a number n into 

distinct parts! So now we can fill this in the same way: numbers still increase by row and by column: 

1 2 4 5 

3 6 8 

7 

Theorem 1 (Thrall, 1952) 

The number of shifted Young tableaux with shifted shape λ with n boxes is similarly 

Q n! 
a∈λ h(a) 

where h(a), the hook length, now includes a “broken leg.” 
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For example, here’s a hook with a broken leg: 

x 

Basically, if the hook reaches the left staircase (not the bottom or the right part), it bends over and continues. 

The proof of this is similar with the idea of a “hook walk,” and it was given by Sagan in 1980. 

So the point is that there is a nice number for the number of linear extensions in some posets. 

It’s time to move on to q-analogs! This stands for both a variable q and for “quantum.” The idea is that we can have 

classical objects and quantum objects, and as we take q = 1, we get the classical limit. For example, Planck’s constant 
~ gives q = e , and as we take ~ → 0, we basically get q = 1. 

What are some other examples of this? 

Classical Quantum 
n 

n n−1 1−q[n]q ≡ [n] = 1 + q + q2 + · · · + q = 1−q 
n! = 1 · 2 · · · · n [n]q! ≡ [n]! = [1] · [2] · · · · · [n] 

So let’s look a bit more carefully at what this factorial actually leads to. Binomial coeÿcients depend on factorials as 

well! 

Classical Quantum � � � � � � 
n n n [n]q ! ≡ = [k]q ![n−k]q ! k k k 

q 

Example 2 �
4 � 

In normal numbers, = 6. But for the q-factorial, � � 2 

4 [4] · [3] (1 + q + q2 + q3)(1 + q + q2) 2 3 4 = = = (1 + q 2)(1 + q + q 2) = 1 + q + 2q + q + q . 
2 [1] · [2] (1 + q) 
q 

Are there any observations we can make here? If we do some more bashing, we can find the following: � � 
n m • is a polynomial in q of the form a0 + a1q + · · · + amq . 
k 
q 

• The coeÿcients ai are all positive integers. These are actually called the Gaussian coeÿcients. 
• The coeÿcients are symmetric or palindromic: writing them backwards gives back the same thing. 
• The coeÿcients first increase and then decrease: a0 ≤ a1 ≤ · · · ≤ abm/2c ≥ · · · ≥ am. 

Recall that normal coeÿcients form a Pascal’s triangle. Do we have a similar thing here? 

n = 0: 1 

n = 1: 1 1 

n = 2: 1 1 + q 1 

2 2 n = 3: 1 1 + q + q 1 + q + q 

3 4 3 n = 4: 1 1 + q + q2 + q 1 + q + 2q2 + q3 + q 1 + q + q2 + q 1 
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In normal Pascal’s triangle, we have � � � � � � 
n n n + 1 
+ = . 

r r + 1 r + 1 
Turns out something similar occurs here! Notice that each entry of the q-Pascal’s triangle is a sum of the two things 

above it, but one of them is multiplied by a factor of q or something like it. 

Proposition 3 (q-Pascal’s recurrence relation) 

For any n, k , � � � � � � 
n n − 1 n − 1 
= + q n−k . 

k k k − 1 
q q q 

Proof. We just write out the expressions as factorials: � � � � 
n − 1 n − 1 [n − 1]! [n − 1]! n−k n−k + q = + q 
k k − 1 [k ]![n − k − 1]! [k − 1]![n − k ]! 

q q 

We can combine common terms: 
[n − 1]! 

= ([n − k ] + q n−k [k ]) 
[k!][n − k ]! 
n−k−1 n−k + · k and now note that [n − k ] = 1+ q + q2 + · · · + q , and qn−k [k ] = q · · + q . So these work out to just [n], and 

this gives � � 
[n − 1]! n 

= [n] = 
[k!][n − k ]! k 

q 

as desired. 

It’s time to formulate the combinatorial interpretation for these now! Let λ be a Young diagram, and let λ ⊆ k × (n − k) 

mean that the Standard (straight) Young diagram fits inside a k by n − k rectangle. So there are at most k nonzero parts, 

and each one is at most n − k . In other words, 

λ1 ≥ λ2 ≥ · · · λk ≥ 0. � � 
n First of all, the number of standard Young diagrams that fits in here is , because we’re doing a lattice walk from the k 

bottom left to top right corner! 

Theorem 4 

For any n, k , � � 
n X 

|λ| = q . 
k 
q λ⊆k×(n−k) 

For example, for n = 4, k = 2, there are 6 possible Young diagrams. 1 of them has 0 squares, 1 of them has 1 square, 2 

of them have 2 squares, 1 of them has 3 squares, and 1 of them has 4 squares! � � 
n 

Note that this immediately implies the first three observations! This shows that the degree of is k(n − k), and 
k 
q 

palindromicity comes by taking the complement of the shape for any Young diagram. 

There’s an interesting way to prove the theorem, but instead, there’s always the brute-force method, which is to use 

induction. 

Proof by induction. Base case is not hard to prove. Now, we check the q-Pascal’s recurrence for the right hand side. 

Look at the first row of the Young diagram. We know λ1 ≤ n − k . 
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If λ1 < n − k, which means λ1 ≤ n − k − 1, then λ fits inside a k by n − k − 1 rectangle instead! This gives the • � � 
n − 1 

term. 
k 

q 
• Otherwise, λ1 = n − k, which means the first row is completely filled. Then if we delete the first row, we get λ 

inside a k − 1 by n − k rectangle, and each of these is like an original Young diagram, but we need to add back � � 
n−k n−1 n − k squares. That’s why this contributes a factor of q , and we’re done! k−1 

This doesn’t really explain what Young diagrams are coming from, though. Next time, we’ll give a more algebraic proof 

that will explain the source! 
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