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Andrew Lin 

Spring 2019 

This class is being taught by Professor Postnikov. 

March 8, 2019 

We will continue with presentations today. 

Problem 1 

Prove that the major index is equidistributed with the number of inversions of w ∈ Sn. Recall that the major index is 

the sum of the indices of the descents X 
i . 

wi >wi+1 

Solution by Yogeshwar Velingker. We’re trying to show that X X 
maj(w ) inv(w ) q = q . 

w ∈Sn w ∈Sn 

The right hand side, as proved in class, is 

1(1 + q)(1 + q 2) · · · (1 + q + · · · + q n−1) = [n]q !. 

This can be shown by induction, and we’ll do a similar thing here. This is obvious when n = 1: there are no descents and 

no inversions. 

Now let’s say we have a permutation w = (w1, · · · , wn). If we insert n + 1 here, there are several cases. 

• Case 1: if we insert n + 1 at the end, the major index stays the same. Otherwise, we insert n + 1 somewhere in the 

middle. Let w0 = 0: then n + 1 goes after some wi . 
• Case 2: If we insert it between wi and wi+1, and wi < wi+1, we add a descent at spot i + 1 and then shift all 

descents after it by 1 spot. So in this case, the major index increases by i + 1 + d(i), where d(i) is the number of 

descents in w at or after i . 
• Case 3: If we insert n + 1 between wi and wi+1, but wi > wi+1, then the descent goes from spot i to spot i + 1, 

and we also shift all later descents by 1. So the major index just increases by d(i) here. 

Our goal is to show that all of these increases are the numbers 0 through n, as this would show the result by induction! 

Notice that d(i) + i + 1 in the ascent case is at most n, because the descents in d(i) can occur at spots i + 1, · · · , n − 1, 

and also d(i) < n in the ascent case. So we just need to show that the values are all di˙erent. 

We can’t have d(i) = d(j) in the two descent insertions, because one descent occurs before the other. If i and j are 

both ascents, then d(i) + i +1 = d(j) + j +1, and this implies d(i) − d(j) = j − i . But that would mean we need descents 

at all spots between i and j , which is not possible since i is an ascent. 
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Finally, let’s say i is a descent and j is an ascent, so 

d(i) = d(j) + j + 1 =⇒ d(i) − d(j) = j + 1, 

but (????), which is bad. 

This means that all increases in major index from inserting n + 1 are all di˙erent, so we’re done by induction! 

Problem 2 

Find the number of permutations w ∈ Sn that are 231-avoiding and k(k − 1) · · · 1-avoiding, where k = 4. 

Solution by Congyue Deng. Denote this T (n, k). We claim that 
nX 

T (n + 1, k) = T (i , k)T (n − i , k − 1). 
i=0 

To show this, consider any w ∈ Sn+1 = σ(n + 1)τ , where σ is i elements and τ is the remaining n − i elements. Since w is 

231-avoiding, the elements in σ are all smaller than the elements in τ . Note that both σ is a 231 and k(k − 1) · · · 1-avoiding 

Sm and τ is a 231 and k(k − 1) · · · 1-avoiding Sn−m permutation, which is the exact recurrence relation we want as we 

sum over m! 

Now, let’s compute T (n, 3). This is the number of 231 and 321-avoiding permutations. If we insert n + 1 into a 

permutation wn ∈ Sn, but we can’t put it in slot i , then we also can’t put it in slot i − 1. We know that we can put n + 1 

in the end of w , and there are k + 1 ways to put n + 2, or we can put n + 1 in one of the k − 1 last spots and place n + 2 

in the end. So by induction, there are 2n−1 permutations in Sn that avoid 231 and 321. 

So now 

T (n + 1, 4) = 2n−1T (0, 4) + 2n−2T (1, 4) + · · · + T (n, 4), 

which yields 

T (n + 1, 4) = 3T (n, 4) − T (n − 1, 4) 

which is just the alternating Fibonacci numbers F2n−1. 

Recall the problem from last lecture: 

Problem 3 

Prove that the number of set-partitions of [n] that have no i , i + 1 in the same partition is the same as the number of 

set-partitions of [n − 1]. 

Proof by Wanlin Li. Draw an arc-diagram: for example, (1, 3, 5) in the same partition would correspond to arcs between 1 

and 3 and between 3 and 5. If we have a set-partition of [n] with i and i + 1 not in the same partition, this is the same as 

having no arcs of diameter 1. Now shrink every arc by 0.5 in each direction, this is easily reversible and is a bijection! 

Problem 4 

For the biased drunk-walk, find the probability that if the man starts at i0 and moves right with probability p, he falls 

o˙ after m steps. 

Solution by Sarah Wang. The man needs to take k steps to the right and k + i0 steps to the left, so 
m − i0 

k = 
2 
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(so we must assume m ≥ i0 and m, i0 have the same parity.) 

Draw the path as a Dyck path: we want to count the number of paths from (0, i0) to (m, 0). Much like with the 

Catalan numbers, we will instead count the number of bad paths. Those intersect the x-axis: pick the first point where 

this happens, and reflect the remaining path from there to (m − 1, 1) over the y -axis to (m − 1, −1). This is a bijection, 

so the total number of good paths is � � � � 
m − 1 m − 1 

− . 
k k − 1 

Each path occurs with probability 

p k (1 − p)k+i0 , 

so our final answer is the number of paths times the probability of each. 

Problem 5 

Prove the baby-hook length formula: the number of linear extensions of a poset whose Hasse diagram is a rooted tree 

is Q n! . 
v ∈T h(v) 

Proof by Sanzeed Anwar. Use strong induction. The base case n = 1 is easy to show. 

Take a poset whose Hasse diagram is a rooted tree of n vertices. From the vertex, there are some subtrees T1, T2, · · · , Tk , 
with m1, · · · , mk vertices. Note that m1 + · · · + mk = n − 1. 

By strong induction, the number of linear extensions of Ti is just 
mi ! Q , 
v∈Ti h(v ) 

so if we want a rooted tree on all n vertices, we can do this in � � 
m1!m2! · · · mk ! n − 1 Q 

h(v) m1, m2, · · · , mk v 6=root 

ways, since we can pick which m1 nodes to use for T1, which m2 nodes to use for T2, and so on. This simplifies to 

(n − 1)! n! Q = Q , 
h(v) h(v ) v 6=root v 

as desired. 

Problem 6 

Show that a permutation of length mn + 1 has an increasing subsequence of length m + 1 or decreasing subsequence 

of length n + 1. 

Proof. For each element in the permutation, assign an ordered pair (i , j) where i is the length of the longest increasing 

subsequence up to that element and j is the length of the longest decreasing subsequence up to that element. These 

are all distinct (since any subsequence can be extended), so we can’t have 1 ≤ i ≤ m and 1 ≤ j ≤ n for all i , j by the 

Pigeonhole principle. 
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