18.212: Algebraic Combinatorics

Andrew Lin

Spring 2019

This class is being taught by Professor Postnikov.

March 11, 2019

We have one more presentation today:

Problem 1

Let $k \leq \frac{n}{2}$. Find a bijection f between k-element and (n - k)-element subsets of [n] that $f(I) \supset I$, for any k-element subset I.

Solution by Chiu Yu Cheng. Note that the complement of a k-element subset has n - k elements. Thus, it suffices to find a function $f' : I \to f'(I)$ such that $f'(I) \cap I = \emptyset$.

Put 1, 2, \cdots , *n* in a circle. Initialize f'(I) to the empty set. For each $x \in I$, move clockwise until we meet the first element not in *I* and f'(I) already, and put that in f'(I).

We just need to show this is a bijection. To do this, we want to show that f'(I) is determined regardless of the order of I. Given $x \notin I$, is it in f'(I)? Assign a number 1 to a number on the circle if it is in I and -1 otherwise. x is in f'(I) if and only if there is a counterclockwise partial sum starting from x - 1 that is positive. This is independent of the order of I chosen!

This was a Google problem for getting an interview a while ago. We'll have another solution to this problem as we talk about some more concepts!

Remember the ideas of posets and lattices from a few lectures ago: we have a set L with operations \land and \lor . Alternatively, we can define an operation \leq , where \land (meet) is the unique maximal element \leq both x and y, and \lor (join) is the unique minimal element such that both x and y are \leq it. It can be shown that this poset chain satisfies the axioms that we want: the idea is that

$$x \leq y \iff x \wedge y = x.$$

An axiom of the lattice definition is that $x \wedge y = x \iff x \vee y = y$, so this is consistent.

Definition 2

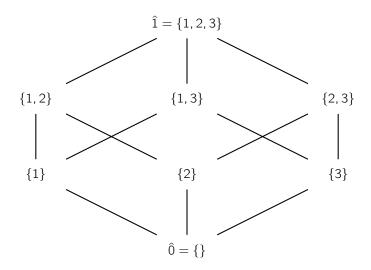
The **Boolean lattice** B_n is defined with elements that are subsets of $\{1, \dots, n\}$. Our order relation $S_1 \leq S_2 \iff S_1 \subset S_2$. Then \land and \lor have nice interpretations:

$$S_1 \wedge S_2 = S_1 \cap S_2$$
, $S_1 \vee S_2 = S_1 \cup S_2$.

This might explain why \land and \lor look the way they do!

Example 3

The Boolean lattice B_3 looks like this, where $\hat{0}$ denotes the smallest element and $\hat{1}$ denotes the largest element:



Notice that this traces out a 3-dimensional cube!

Definition 4

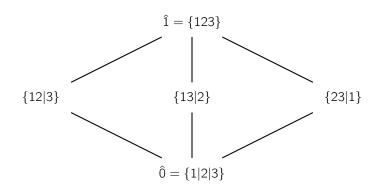
The **partition lattice** Π_n has elements that are set-partitions of $\{1, \dots, n\}$. They are ordered by **refinement**: $\pi \leq \sigma$ (which means π **refines** σ or σ **coarsens** π) if each block of π is contained in a block of σ .

Here, the meet operation $\sigma \wedge \pi$ is the **common refinement** of σ and π : take all intersections of blocks.

On the other hand, the join operation $\sigma \lor \pi$ is the **finest common coarsening** of σ and π , but this is slightly harder to define. If *a*, *a'* are in the same block of π , and *a'*, *a''* are in the same block of σ , *a''*, *a'''* are in the same block of π , and so on (alternating between π, σ), then those elements along the chain are in the same block of $\sigma \lor \pi$.

Example 5

Here's what the partition lattice Π_3 looks like:



Definition 6

Young's lattice \mathbb{Y} is an infinite lattice of all Young diagrams ordered by containment.

The minimal element $\hat{0}$ is the empty Young diagram. Above it, we have the diagram with a single box, then 2 dominoes, and then there are 3 Young diagrams of 3 boxes, 5 Young diagrams of 4 boxes, and so on.

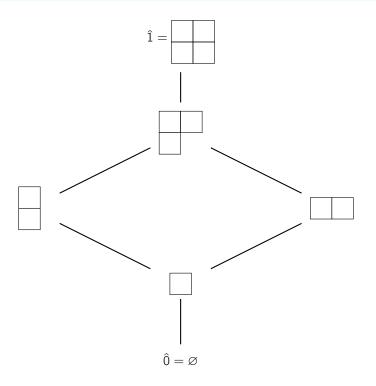
Fact 7

Given any Young diagram, there is always 1 more shape above it than there is below it (think about the corners)!

There are finite sublattices of \mathbb{Y} : for example, we can fix m, n, and define L(m, n) to be the sublattice of Young diagrams that fit inside an $m \times n$ box. Recall that those are generated by the generating function $\begin{bmatrix} n \\ k \end{bmatrix}_{n}$.

Example 8

L(2,2) is a finite lattice: it has a unique maximal and minimal element. It looks like this:



What are the meet and join operations? Here, $\lambda \wedge \mu$ is the set-theoretic intersection, and $\lambda \vee \mu$ is the union. It can be checked that these are indeed always Young diagrams!

Among all lattices, there is a special class:

Definition 9

A lattice (L, \land, \lor) is **distributive** if it satisfies the distributive laws

- $x \land (y \lor z) = (x \land y) \lor (x \land z).$
- $x \lor (y \land z) = (x \lor y) \land (x \lor z).$

Notice that this is not satisfied by normal operations: $x + (yz) \neq (x + y)(x + z)$.

Lemma 10

 B_n is a distributive lattice!

Proof. It is easy to check that in general, $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$, and similarly $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$. (Draw a Venn diagram!)

Lemma 11

The Young lattice \mathbb{Y} , as well as L(m, n) are distributive lattices.

Proof. Meet and join are still just unions and intersections here! So the same proof works.

Fact 12

Unfortunately, \prod_n for $n \ge 3$ is not a distributive lattice. So not all lattices are distributive! For example, let x = (12|3), y = (13|2), z = (23|1). Then

$$x \lor (y \land z) = x, (x \land y) \lor (x \land z) = \hat{1}.$$

Turns out there is a very simple description of finite distributive lattices:

Definition 13

Given a poset $P, I \subset P$ is an order ideal if for all $x \in I, y \leq x, y \in I$.

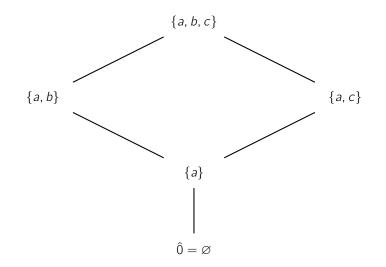
So ideals basically contain some "bottom part" of the Hasse diagram: it's "closed downward."

Definition 14

Given a poset P, denote J(P) to be the poset of all order ideals in P, ordered by containment.

Theorem 15 (Birkhoff's FTFDL (Fundamental Theorem for Finite Distributive Lattices)) The map $P \rightarrow J(P)$ is a one-to-one correspondence between finite posets and finite distributive lattices!

For example, if our poset has elements $a \le b$, $a \le c$, then the order ideals are $\{\}, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}$. In other words, here's the poset J(P) for P = a:



We'll look a bit more at this next time!

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

18.212 Algebraic Combinatorics Spring 2019

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.