18.212: Algebraic Combinatorics

Andrew Lin

Spring 2019

This class is being taught by Professor Postnikov.

March 13, 2019

Remember from last lecture: if we have a poset P, then $J(P)$ is the poset of order ideals in P, ordered by inclusion. (Order ideals are closed downward.)

Lemma 1

 $J(P)$ is a distributive lattice.

Proof. If we have two order ideals I and J, we can define the meet operation $I \wedge J = I \cap J$: it can be checked that the intersection of two order ideals is an order ideal. Similarly, we define $I \vee J = I \cup J$, and everything works.

Since the usual union and intersection satisfy the distributive laws, this is also a distributive lattice.

 \Box

Remember from last time that the converse is also true:

Theorem 2 (Fundamental Theorem for Finite Distributive Lattices)

Every finite distributive lattice is of the form $J(P)$ for some poset P. In particular, $P \to J(P)$ is a bijection between finite posets and finite distributive laws.

Main sketch of the proof. We already know how to get from $P \to J(P)$: our goal is to reconstruct a poset from a finite distributive lattice L.

Definition 3

An element $x \in L$ is join-irreducible if it is not the minimal element of L [which exists] and we cannot express it as $x = y \lor z$ for y, $z < x$ (\le and not equal).

For example, if we take the lattice above, everything except the bottom and top element is join-irreducible. But it turns out we can just construct P to be the subposet of L of all join-irreducible elements! It's an exercise to show that $L \cong J(P)$. \Box

Definition 4

A poset P is ranked if there is a ρ : $P \to \{0, 1, 2, \dots\}$ such that $\rho(x) = 0$ for any minimal elements x of P and

 $\rho(y) = \rho(x) + 1$ if $x \le y$.

So far, all the posets that we've been discussing have been ranked: the idea is that all elements live on different "levels." In the diagram below, the left poset is ranked, but the right poset is not.

Proposition 5

Any finite distributive lattice is ranked with the **modularity property**: $\rho(x \vee y) + \rho(x \wedge y) = \rho(x) + \rho(y)$.

Proof. If $L = J(P)$ is a finite distributive lattice, and $I \in L$ is an order ideal of P, then the rank is just $\rho(I) = |I|$. So our goal is to show that $I \ll J$, they only differ in one element: this is true because $I \ll J$ means I is strictly contained in J. \Box

Definition 6

Let P be a finite ranked poset. Define r_i to be the number of elements in P with rank i: call this a rank number of P. These rank numbers form a vector (r_0, r_1, \cdots, r_N) , where N is the maximal rank of any element, and P is rank-symmetric if $r_i = r_{N-i}$ for all i. If $r_0 \le r_1 \le \cdots \le r_j \ge r_{j+1} \ge \cdots \ge r_N$, then P is unimodal.

In the most recent example on the left, we have rank numbers $(1, 2, 2, 1)$, so the poset is both unimodal and ranksymmetric.

Definition 7

Let P and Q be two posets. Define their product $P \times Q$ to be the poset whose elements are pairs (p, q) , $p \in P$, $q \in Q$. The order relation

 $(p, q) \leq (p', q') \iff p \leq p', q \leq q'.$

Notice that not all pairs are comparable.

Example 8

Let $[n]$ denote the poset whose Hasse diagram is just an increasing chain of n elements. Clearly this is rank-symmetric and unimodular.

Example 9

What does $[m] \times [n]$ look like? We have a grid, but we have to rotate it by 45 degrees. Then (m, n) has rank $m + n$.

The rank numbers look like $(1, 2, \dots, k-1, k, \dots, k, k-1, \dots, 2, 1)$, where k is the minimum of m and n. This is also rank-symmetric and unimodular.

What happens if we apply J to our posets? $J([n])$ is just $[n+1]$, but do we get something more interesting if we look at

 $J([m] \times [n])$?

Well, every order ideal corresponds to a Young diagram if we replace elements with boxes! So order ideals are exactly the Young diagrams that fit inside our grid, meaning that

$$
L(m, n) = J([m] \times [n])
$$

is the poset of Young diagrams that fit in an $m \times n$ rectangle. But we know the rank numbers r_i for $J([m] \times [n])$ must be the same as the number of Young diagrams with i squares! So these are the Gaussian coefficients

$$
\begin{bmatrix} m+n \\ n \end{bmatrix}_q = r_0 + r_1 q + \cdots + r_{mn} q^{mn}.
$$

This leads to the following (after some work):

Theorem 10

 $L(m, n)$ is rank-symmetric and unimodular.

Let's go back to looking at some examples! What is $J([2] \times [n])$? We want the Young diagrams that fit inside a $2 \times n$ rectangle. This Hasse diagram looks like a triangle:

But let's look at the order ideals of this triangular Hasse diagram: what is

 $J(J([2] \times [n]))$?

Notice that the order ideals here correspond to shifted Young diagrams! So $J(J([2] \times [n]))$ is the poset of shifted Young diagrams, ordered by inclusion, which fit inside a shifted Young diagram with $n, n-1, \dots, 1$ boxes in the first n rows.

It's an exercise to see that this is also rank-symmetric and unimodular!

Theorem 11 (Sperner's theorem, 1928) Let S_1, \dots, S_M be different subsets of $\{1, 2, \dots, n\}$, such that for all $i, j, S_i \nsubseteq S_j$. Then $M \leq {n \choose n/2}$.

How is this related to posets? A chain C in a poset P is a set of elements such that any two elements are "compatible:" one is contained in the other, so we have a total ordering of C . An **antichain** A in P is the opposite: no two elements are compatible.

Definition 12

Let P be a finite ranked poset with rank numbers r_0, r_1, \cdots, r_N . P is **Sperner** if M, the maximal size of an antichain in P, is max (r_0, \cdots, r_N) .

It's clear that M should be at least the maximum of r_0, \dots, r_N : just take all elements with some fixed rank. If this is an equality, we have a Sperner poset.

Sperner's theorem says that the Boolean lattice is Sperner: we're just looking at the central binomial coefficient, which is the maximal rank number of the Boolean lattice! We'll do this proof next time, but here's an example of a non-Sperner poset, because the rank numbers are 3, 3 but there is an antichain of length 4:

MIT OpenCourseWare <https://ocw.mit.edu>

18.212 Algebraic Combinatorics Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.