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Remember from last lecture: if we have a poset P , then J(P ) is the poset of order ideals in P , ordered by inclusion. (Order 

ideals are closed downward.) 

Lemma 1 

J(P ) is a distributive lattice. 

Proof. If we have two order ideals I and J, we can define the meet operation I ∧ J = I ∩ J: it can be checked that the 

intersection of two order ideals is an order ideal. Similarly, we define I ∨ J = I ∪ J, and everything works. 

Since the usual union and intersection satisfy the distributive laws, this is also a distributive lattice. 

Remember from last time that the converse is also true: 

Theorem 2 (Fundamental Theorem for Finite Distributive Lattices) 

Every finite distributive lattice is of the form J(P ) for some poset P . In particular, P → J(P ) is a bijection between 

finite posets and finite distributive laws. 

Main sketch of the proof. We already know how to get from P → J(P ): our goal is to reconstruct a poset from a finite 

distributive lattice L. 

Definition 3 

An element x ∈ L is join-irreducible if it is not the minimal element of L [which exists] and we cannot express it as 

x = y ∨ z for y , z < x (≤ and not equal). 

For example, if we take the lattice above, everything except the bottom and top element is join-irreducible. 

But it turns out we can just construct P to be the subposet of L of all join-irreducible elements! It’s an exercise to 

show that L ∼= J(P ). 

Definition 4 

A poset P is ranked if there is a ρ : P → {0, 1, 2, · · · } such that ρ(x) = 0 for any minimal elements x of P and 
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ρ(y) = ρ(x) + 1 if x l y . 

So far, all the posets that we’ve been discussing have been ranked: the idea is that all elements live on di˙erent “levels.” 

In the diagram below, the left poset is ranked, but the right poset is not. 
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1 

2 

1 
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3 

0 

1 

1 

2 

? 

ranked not ranked 

Proposition 5 

Any finite distributive lattice is ranked with the modularity property: ρ(x ∨ y) + ρ(x ∧ y) = ρ(x) + ρ(y ). 

Proof. If L = J(P ) is a finite distributive lattice, and I ∈ L is an order ideal of P , then the rank is just ρ(I) = |I|. So our 

goal is to show that I l J, they only di˙er in one element: this is true because I < J means I is strictly contained in J. 

Definition 6 

Let P be a finite ranked poset. Define ri to be the number of elements in P with rank i : call this a rank number 
of P . These rank numbers form a vector (r0, r1, · · · , rN ), where N is the maximal rank of any element, and P is 

rank-symmetric if ri = rN−i for all i . If r0 ≤ r1 ≤ · · · ≤ rj ≥ rj+1 ≥ · · · ≥ rN , then P is unimodal. 

In the most recent example on the left, we have rank numbers (1, 2, 2, 1), so the poset is both unimodal and rank-

symmetric. 

Definition 7 

Let P and Q be two posets. Define their product P × Q to be the poset whose elements are pairs (p, q), p ∈ P, q ∈ Q. 

The order relation 
0 0 0 (p, q) ≤ (p , q 0) ⇐⇒ p ≤ p , q ≤ q . 

Notice that not all pairs are comparable. 

Example 8 

Let [n] denote the poset whose Hasse diagram is just an increasing chain of n elements. Clearly this is rank-symmetric 

and unimodular. 

Example 9 

What does [m] × [n] look like? We have a grid, but we have to rotate it by 45 degrees. Then (m, n) has rank m + n. 
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The rank numbers look like (1, 2, · · · , k − 1, k, · · · , k, k − 1, · · · , 2, 1), where k is the minimum of m and n. This is 

also rank-symmetric and unimodular. 

What happens if we apply J to our posets? J([n]) is just [n + 1], but do we get something more interesting if we look at 

J([m] × [n])? 

Well, every order ideal corresponds to a Young diagram if we replace elements with boxes! So order ideals are exactly the 

Young diagrams that fit inside our grid, meaning that 

L(m, n) = J([m] × [n]) 

is the poset of Young diagrams that fit in an m × n rectangle. But we know the rank numbers ri for J([m] × [n]) must be 

the same as the number of Young diagrams with i squares! So these are the Gaussian coeÿcients � � 
m + n mn = r0 + r1q + · · · + rmnq . 
n 

q 

This leads to the following (after some work): 

Theorem 10 

L(m, n) is rank-symmetric and unimodular. 

Let’s go back to looking at some examples! What is J([2] × [n])? We want the Young diagrams that fit inside a 2 × n 

rectangle. This Hasse diagram looks like a triangle: 

But let’s look at the order ideals of this triangular Hasse diagram: what is 

J(J([2] × [n))? 

Notice that the order ideals here correspond to shifted Young diagrams! So J(J([2] × [n])) is the poset of shifted Young 

diagrams, ordered by inclusion, which fit inside a shifted Young diagram with n, n − 1, · · · , 1 boxes in the first n rows. 

It’s an exercise to see that this is also rank-symmetric and unimodular! 

Theorem 11 (Sperner’s theorem, 1928) � � 
n Let S1, · · · , SM be di˙erent subsets of {1, 2, · · · , n}, such that for all i , j , Si 6⊆ Sj . Then M ≤ . n/2 
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How is this related to posets? A chain C in a poset P is a set of elements such that any two elements are “compatible:” 

one is contained in the other, so we have a total ordering of C. An antichain A in P is the opposite: no two elements are 

compatible. 

Definition 12 

Let P be a finite ranked poset with rank numbers r0, r1, · · · , rN . P is Sperner if M, the maximal size of an antichain 

in P , is max(r0, · · · , rN ). 

It’s clear that M should be at least the maximum of r0, · · · , rN : just take all elements with some fixed rank. If this is an 

equality, we have a Sperner poset. 

Sperner’s theorem says that the Boolean lattice is Sperner: we’re just looking at the central binomial coeÿcient, which 

is the maximal rank number of the Boolean lattice! We’ll do this proof next time, but here’s an example of a non-Sperner 

poset, because the rank numbers are 3, 3 but there is an antichain of length 4: 
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