
    

Problem 1 

Show that the Bell numbers can be calculated using the Bell triangle: 

1 
1 2 

2 3 5 
5 7 10 15 

15 20 27 37 52 
. . . . . . . . . . . . . . . 

In this triangle, the first number in each row (except the first row) equals the last number in the previous row; and 

any other number equals the sum of the two numbers to the left and above it. The Bell numbers B(0) = 1, B(1) = 

1, B(2) = 2, B(3) = 5, B(4) = 15, B(5) = 52, · · · appear as the first entries (and also the last entries) in rows of this 

triangle. 

Solution by Fadi Atieh. We’ll prove this by induction: the induction case is easy, because B0 = B1 = 1. Now looking at 

the induction step, assume that we have already built k rows of this triangle. We know that the leftmost entry is Bk−1, 

and the right-most entry is Bk , so the k + 1th row begins with Bk . The next entry is Bk + Bk−1, and notice that we can 

recursively push our numbers up and to the left until we reach the left diagonal. We just need to figure out the actual 

recurrence relation! 

Well, if we try to construct Bk+1, the rightmost entry in the k + 1th row, we can sum it by taking some left and up 

steps to the diagonal. To get to Bi , we need i left steps and k − i up steps, which means 
k � � X k

Bk+1 = Bi . 
i 

i=0 

This is the recursive formula for bell numbers, because we pick some i numbers in our partition to be in the same partition 

as k + 1. 

Problem 2 

1 
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Show that the Stirling numbers have the following recurrence relations: 

S(n + 1, k) = kS(n, k) + S(n, k − 1) 

and 

c(n + 1, k) = nc(n, k) + c(n, k − 1). 

Solution by Ramya Durvasula. S(n, k) tells us how to place n numbers into a set-partition with k groups. If we partition 

n + 1 into k groups, one way is to have n + 1 on its own, in which case we partition 1 through n into k − 1 groups: thus 

there are S(n, k − 1) ways to do this. On the other hand, n + 1 may not be on its own, in which case we can partition the 

numbers 1 through n into k sets. Then we put n + 1 into one of the k sets in one of k ways, so this process has kS(n, k) 

possible choices. 

Putting these together, S(n + 1, k) = kS(n, k) + S(n, k − 1), as desired. 

Similarly, c(n, k) tells us how to make a permutation of n numbers with k cycles. If we are trying to compute c(n +1, k), 

again, we think about where n + 1 goes: if it goes in its own cycle, we have c(n, k − 1) ways to do this, since n + 1 gets 

placed in its own cycle. On the other hand, if n + 1 is in a cycle, first create k cycles with the numbers 1 through n: 

there are c(n, k) ways to do this, and then we can add n + 1 to one of the n spots after any element, so this process has 

nc(n, k) ways. 

Putting these together, c(n + 1, k) = nc(n, k) + c(n, k − 1), as desired. 

Problem 3 

We have operators X : f (x) → xf (x) and D : f (x) → f 0(x). Defining fn(x) = (x + D)n(1); for example, 

f0(x) = 1, f1(x) = x, f2(x) = x2 + 1, f3(x) = x3 + 3x . Find the constant term fn(0) in terms of n. 

Solution by Ganatra. We know that recursively, 

fn(x) = xfn−1(x) + fn 
0
−1(x) 

so plugging in x = 0, 

fn(x) = fn 
0
−1(x). 

The idea is that fn is entirely dependent on the value of fn−1. Writing out a few more values, 

f4(x) = x 4 + 6x 2 + 3, f5(x) = x 5 + 10x 3 + 15x, f6(x) = x 5 + 15x 4 + 45x 2 + 15, 

f7(x) = x 7 + 21x 5 + 105x 3 + 105x, f8(x) = x 8 + 28x 6 + 210x 4 + 420x 2 + 105. 

We start to notice some patterns: xn is always the leading coeÿcient of fn(x), and the last coeÿcients are 1, 1, 1, 3, 3, 15, 15, 105, 105. 

In fact, we can find a general formula 
bXn/2c 

n−2k (n)2k fn(x) = x . 
k!2k 

k=0 

This can be proved with induction. So now � � 
n (n)k n! 
= =⇒ (n)k = , (2k)!! = 2k k! 

k k! (n − k)! 
n! Plugging these in, we can say that (n)2k = (n−2k)! . We’re only concerned with the last term of our formula for fn: if n is 

odd, our constant term is 0, and otherwise, our expression simplifies to (for n even) is 

n! 
fn(0) = = (n − 1)!!. 

n!! 
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Professor Postnikov says that it turns out there is a relation between this problem and the previous problem about up 

and down operators on Young’s lattice: the key relation is that DU − UD = I, D(∅) = 0. These alone imply that the 

number of paths of length 2n is (2n − 1)!!. 

The coeÿcients (n)2k in fn(x) also tell us something about Young’s lattice: it’s the number of ways to take 2n steps to 
k!2k 

get to the kth level. 

Time to move on to a new topic! We’re going to discuss spanning trees. 

Definition 4 

Let G = (V, E) be a graph with a set of vertices V and edges E with no loops (edges with both endpoints being the 

same vertex), but where multiple edges are allowed. Then a spanning tree of G is a subgraph T with the same set 

of vertices T = (V, E0), where E0 ⊂ E which is a tree that connects all vertices. 

Notably, it has no cycles, and we can’t have repeated edges either (since they form a cycle). So we’re picking some 

|V | − 1 edges that “span” or connect all vertices of the original graph. Define T (G) to be the number of spanning trees of 

a graph G. 

For example, consider the graph 

1 2 

3 4 

For this graph, T (G) = 12, because there are 4 ways to not use the double edge and 2 · 2 · 2 ways to pick the double 

edge. 

Fact 5 

The number of spanning trees on Kn, 

T (Kn) = n n−2 . 

This is because we can pick any labeled tree! 

It turns out there is a formula in general called the matrix-tree theorem! 
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