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We’re going to talk some more about the matrix tree theorem today. Recall that if we have a graph G with n vertices, we 

define the Laplacian matrix L = (Li j ) whose entries are 8 < degG (i) 
Li j = : −number of edges from i to j 

i = j 

i 6= j 

This can also be written as 

L = D − A, 

where D is the diagonal matrix of degrees and A is the adjacency matrix. Last time, we discussed the reduced Laplacian 
L̃ = Li , which is the Laplacian matrix without row and column i . Then the matrix-tree theorem says that the number of 

spanning trees in G is just the determinant of L̃. 

There are many proofs of this: we’ll go through one today, and we’ll generalize the theorem later on. First, though, 

let’s look at some more applications! 

Definition 1 

Define the direct product of two graphs 

G = (V1, E1), H = (V2, E2) =⇒ G × H = (V1 × V2, E3) 

where the edges are of the form 

E3 = {(i , j), (i 0, j 0)|i = i 0 , (j, j 0) ∈ E2 or j = j 0 , (i , i 0) ∈ E1}. 

For example, the product of two line graphs is a grid graph. 

Lemma 2 

Let A(G) be the adjacency matrix of G, and let’s say it has eigenvalues α1, · · · , αm. Similarly, let’s say A(H) is the 

adjacency matrix of H with eigenvalues β1, · · · , βn. Then the adjacency matrix A(G × H) has eigenvalues αi + βj , 

where 1 ≤ i ≤ m, 1 ≤ j ≤ n. 

This is an exercise in linear algebra. The idea is to notice that the adjacency matrix A(G × H) is a tensor product 

A(G × H) = A(G) ⊗ I + I ⊗ A(H). 

It turns out this lemma doesn’t help us very much with the matrix tree theorem, except when our graphs are regular! 
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Proposition 3 

Let G be a d1-regular graph and H be a d2-regular graph. Then G × H is d1 + d2-regular, and its eigenvalues are 

d1 + d2 − αi − βj . Then we apply the matrix tree theorem: multiply all the eigenvalues except for 0 and divide by the 

number of vertices. 

An important application of this is the hypercube graph! 

Definition 4 

The hypercube graph Hd is a 1-skeleton of a d-dimensional cube. In other words, it’s the product of d copies of a 

2-vertex chain. 

For example, H3 has 8 vertices (those of a cube). Note that Hd is always a regular graph, so we can apply the proposition 

above! The adjacency matrix of a chain is � � 
0 1 

A = =⇒ λ = ±1. 
1 0 

Repeatedly applying the lemma about the eigenvalues of A(G × H), the adjacency matrix of the hypercube graph A(Hd ) 

has 2d total eigenvalues of the form 

ε1 + ε2 + · · · + εd , εi ∈ {−1, 1}. �
d � 

The smallest eigenvalue is −d , and the largest eigenvalue is d : specifically, there is a multiplicity of the eigenvalue � � k 
d −d + 2k . Since Hd is d-regular, the Laplacian matrix has eigenvalues 2k of multiplicity . k 

So now we just apply the matrix tree theorem! 

Corollary 5 

The number of spanning trees of Hd is 

d dY 
22
d −d−1 k(

d ) 
k 

1 Y 
(2k)(k

d ) = . 
2d 
k=1 k=1 

(by pulling the powers of 2 out). 

For example, taking d = 3, the number of spanning trees is 

28−3−1 · 13 · 23 · 31 = 384. 

Some time ago, Richard Stanley proposed the question of finding a combinatorial proof to this. This is pretty hard, but 

it was recently solved around 2012 by Bernardi. It’s still open to find an explicit bijection! 

By the way, if we use a grid graph (so we have a d-dimensional box), our graph is no longer regular, but if we make it a 

torus, we can get a similar product formula. 

In the rest of this lecture, we’ll start on a proof of the matrix tree theorem! Recall that we defined the incidence matrix 

(which is not a square matrix); we’ll want to make a modification of it. 

Proof. Direct our edges of G however we’d like. For example, 
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b d 
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Let’s say that G has n vertices and m edges. 

Define the oriented incidence matrix of G to be a n × m matrix B 8 >< 
>: 

= (Bie ) where i ∈ V and e ∈ E: 

1 i source of edge e 

bie = −1 i target of edge e 

0 otherwise. 

For example, here we have 1 0 
B = 

BB@ 
1 −1 0 0 0 0 
−1 0 −1 1 1 0 
0 1 1 −1 0 1 
0 0 0 0 −1 −1 

CCA . 

Lemma 6 

The Laplacian of graph G is actually just 

L = BBT . 

This is because (BBT )i j is the dot product of the ith and jth rows of B. If i = j , the dot product will just count the 

number of nonzero entries, which is exactly the degree of that corresponding vertex! On the other hand, when i 6= j , we 

get a −1 each time an edge goes from i to j or vice versa. That’s why the orientation is arbitrary! 

So if B̃ is the oriented incidence matrix without row i , 

L̃ = B̃B̃T , 

by plugging into the definition. Well, we can use the following fact about determinants of non-square matrices: 

Theorem 7 (Cauchy-Binet formula) 

Let A be a k × m matrix and B be an m × k matrix, where k ≤ m. Then the determinant of AB is X 
det(AS) det(BS ), 

S⊆{1,2,··· ,m} 
|S|=k 

where AS is the k × k submatrix of A with columns in S and BS is the k × k submatrix of B with rows in S. 

The best way now is to think of the following product in block form: � � � � � � 
Ik A A 0 0 AB 
0 Im −Im B 

= −Im B 
. 

Now we can just take determinants of the square matrices! The determinant of the first one is 1 (because it is an upper 

triangular matrix with diagonal entries 1), and the determinant of the right matrix is ± det(AB). Now we claim that 

the determinant of the middle matrix is exactly the right hand side of Cauchy-Binet (up to a ± sign which we’ll figure 

out)! The main idea here is by example: apply the usual product over all permutations of rows. For example, consider 
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k = 2, m = 4: 1 0 BBBBBB@ 

0 0 a11 a12 a13 a14 
0 0 

−1 0 0 0 b11 b12 

a21 a22 a23 a24 CCCCCCA . 0 −1 0 0 b21 b22 
0 0 −1 0 b31 b32 
0 0 0 −1 b41 b42 

The determinant of this matrix must take some permutation: we want to place rooks on this shape so that we have exactly 

1 rook on each row and each column. In particular, we should have one rook in each of the last two columns, and then we 

must pick the top and bottom −1, and then we finish by picking some square 2 × 2 matrix in the top 2 rows. Also all the 

signs magically work out. 

We’re almost done, and we’ll continue this proof next time! 
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