
    

18.212: Algebraic Combinatorics 

Andrew Lin 

Spring 2019 

This class is being taught by Professor Postnikov. 

February 13, 2019 

A few people asked about the problem set. It will be assigned sometime in the near future, and it’ll probably due around 

the end of February or beginning of March. 

Remember that we defined numbers f λ to be the number of standard Young tableaux of shape λ. These come from the 

symmetric group, but don’t worry about that yet. The magic is the Hook length formula: f λ has a closed form! Turns out 

there are some other cool facts along this path. 

Proposition 1 (Frobenius-Young identity) 

For an integer n, X 
(f λ)2 = n!. 

λ:|λ|=n 

This also comes from representation theory! 

Example 2 

If we take n = 4, the Young tableaux are 

, , , , . 

The number of ways to fill in the Young tableaux are 1, 3, 2, 3, 1 respectively, and indeed 

12 + 32 + 22 + 32 + 12 = 24 = 4!. 

How can we interpret this identity? The right hand side of the equation is the number of permutations in Sn (on n 

elements). Meanwhile, the left hand side counts pairs of Young tableaux p, q, such that p and q are both SYTs of the 

same shape λ. Is there a nice bijection that we can set up between the two? 

Here’s the Schensted correspondence from 1961, which was generalized later by Knuth to the Robinson-Schensted-
Knuth correspondence (which is about semi-standard Young tableaux)! See papers on the course webpage. This is a 

pretty central construction in algebraic combinatorics! 
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The Schensted’s insertion algorithm. Given a standard Young tableaux T filled with positive integers in S (for example 1, 

3, 7), let’s say we want to insert a positive integer x . 

Definition 3 

Let T ← x be the SYT with an extra box added to T , given by the following procedure: 

1. Initialize x1 = x, i = 1. 

2. If xi is greater than all entries in the ith row of T , then add a new box at the end of the ith row filled with xi 
and stop. 

3. Otherwise, find the smallest entry y in the ith row greater than xi . Replace y by xi , increment i by one, and go 

back to step 2. 

The idea is that we insert x and bump another entry x2 down to the next row. Then x2 will be inserted and bump 

something else, and so on. 

So now given w ∈ Sn, let’s construct a pair (P, Q) of Young tableux. P is called the insertion tableau, and Q is the 

recording tableau. 

To construct P , start with the empty tableau and add w1, w2, · · · , wn one at a time, in that order, using the definition 

above. Meanwhile, to construct Q, i goes to the box that was added at the ith step of constructing P (we record which 

box is added). 

Example 4 

Take the permutation w = (3, 5, 2, 4, 7, 1, 6). 

After we insert 3 and 5, we get 
3 P0 = ∅ =⇒ P1 = =⇒ P2 = 

Trying to insert 2 kicks 3 out into the next row: 

3 5 . 

2 5 P3 = 
3 

Now 4 bumps 5 to get 

P4 = 2 4 
3 5 

, 

and then adding 7, 1, 6 give 

P5 = , P6 = 1 4 7 
2 5 
3 

, P7 = 2 4 7 
3 5 

P = . 1 4 6 
2 5 7 
3 

Now it is easy to see the Q-tableau: when were the boxes created? 

Q = . 1 2 5 
3 4 7 
6 

Theorem 5 
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This construction w → (P, Q) is actually a bijection between the symmetric group Sn and the set of all pairs of Young 

tableux with identical shapes and n boxes! 

Proof. To show a bijection, we want to say that given a pair P and Q, we can reconstruct the permutation. Here’s the 

reverse procedure: 

P = 1 4 6 
2 5 7 
3 

, Q = 1 2 5 
3 4 7 
6 

. 

The position of the 7 in Q tells us that that box was added last, so the 7 came from the first row. Which entry bumped 

7? It must have been 6, the maximal entry of the previous row smaller than 7. So 6 was just added, and that means w 

ended with 6. Now we have 

P 0 = 1 4 7 
2 5 
3 

, Q0 = 1 2 5 
3 4 
6 

. 

Now keep repeating: the bottom left corner has the next maximal entry of Q, so 3 was bumped last step. It must have 

been bumped from 2, and that must have been bumped from 1, so w ’s second-to-last entry is 1, and so on. Continuing 

this procedure, we can recover w ! So given any pair of tableaux, we can uniquely reconstruct w , showing the bijection. 

This correspondence has other special applications as well! The reason was to study increasing and decreasing 

subsequences of permutations. 

Definition 6 

Given a permutation w that corresponds to a pair (P, Q) under the Schensted correspondence, the shape λ of P (and 

Q) is called the Schensted shape of w . 

The first entry λ1, which is the number of boxes in λ, has a special significance: 

Theorem 7 (Schensted) 

The length of the first row of λ is the length of the longest increasing subsequence in w . Meanwhile, as a dual 

statement, the length of the first column of λ is the length of the longest decreasing subsequence in w ! 

For example, the first row has 3 boxes in the example above, so the longest increasing subsequence has length 3. 

Similarly, the first column has 3 boxes, so the longest decreasing subsequence also has length 3. 

We’ll wait until next lecture to do this proof. 

For now, recall that we proposed previously the following fact: 

Corollary 8 

The number of 123-avoiding permutations in Sn is equal to Cn. 

Proof. A permutation w is 123-avoiding if and only if the length of the longest increasing subsequence is at most 2. Thus, 

Schensted correspondence sends this to a pair of tableaux with at most 2 columns; both P and Q have n boxes. We want 

to biject this to a single tableau of shape (2, 2, · · · , 2), since we already know that there are Cn ways to arrange that 

(biject to Dyck paths)! 
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Rotate Q by 180 degrees and stick it in place with P , except replace any entry k with (2n + 1) − k! For example, 

1 3 
2 4 
5 

+ = 1 2 
3 5 
4 

1 3 
2 4 
5 7 
6 8 
9 10 

Finally, here’s a generalization of Schensted. We have an interpretation of λ1, but we can figure out the whole shape 

just by looking at the permutation w ! 

Theorem 9 (Green) 

λ1 + λ2 is the maximal subsequence that can be covered by two increasing subsequences, λ1 + λ2 + λ3 is the maximal 

subsequence covered by three subsequences, and so on! The statement also holds for columns and decreasing 

subsequences. 
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