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The first problem set is posted, and it is due March 4th. There are 15 problems, but we only have to do about 6 of them. 

Later on, we will have one lecture to discuss the problem set solutions. 

Let’s talk more about q-binomial coeÿcients. We have the normal binomial theorem 
n � � X n k n−k (x + y )n = x y . 
k 

k=0 

Unfortunately, q-binomial coeÿcients are less nice, especially since in a “quantum world,” x and y may not always commute. 

Define 

yx = qxy such that qx = xq, qy = yq 

Then we have the following: 

Proposition 1 

For any x, y , n, 
n � � X n k n−k (x + y )n = x y . 
k 
q k=0 

For example, taking n = 2, 

2 2 2 (x + y)2 = (x + y )(x + y ) = x + yx + xy + y = x 2 + (1 + q)xy + y 

In the previous lecture, we proved a main theorem: 

Theorem 2 

Defining � � 
n 
= 

[n]q ! 
k [k ]q ![n − k ]q ! q 

where [n]=1 + q + · · · + qn−1 and factorials multiply q-numbers, then we have the identity � � 
n X 

|λ| = q . 
k 
q λ⊆k×(n−k) 

Somehow this identity still looks like a miracle. Where’s the actual relation? Let’s find a more conceptual proof! 
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Fact 3 

We’re going to use linear algebra, since this class is called algebraic combinatorics. 

Definition 4 

Define the Grassmannian Grkn to be the space of k-dimensional linear subspaces of n-dimensional space. 

Let’s think about this more concretely: what’s the hands-down approach? The idea is that elements of the Grassmannian 

are defined by matrices. We pick a linearly independent basis and put those vectors down as rows! 

Proposition 5 

We can treat Grkn as the set of k × n matrices of rank k. Then if we perform row operations, we have identical 

spaces, so we want to use the matrices modulo row operations. 

So how can we count these? We haven’t mentioned what the entries of the matrices are! They could be real or complex, 

or we could pick any finite field as well. 

Fact 6 
r For any q = p for p prime and r natural number, there exists a unique finite field of order q up to isomorphism. It is 

denoted Fq. 

This is closely related to many fields! Now, we can rephrase our question better: 

Question 7. What is the number of entries in Grkn(Fq )? 

We’re going to count this in two di˙erent ways. 

Solution 1. First of all, note that row operations are k × k invertible matrices, so we can calculate the number of k × n 

matrices of rank k , divided by the number of k × k invertible matrices! 

A matrix A has rows v1, v2, · · · , vk , where vi are all vectors in Fn . To make sure A is invertible, all vk must be independent. q 

The number of ways to pick v1 is qn − 1 (it can be anything except the zero vector). Next, v2 can be anything except 
2 multiples of v1, so there are qn − q ways to pick v2. Similarly, there are qn − q ways to pick v3, and so on, so the total 

number of k × n matrices of rank k is 

(q n − 1)(q n − q) · · · (q n − q k−1). 

But we need to divide by the number of k × k invertible matrices, so our total expression is just 
k−1) (qn − 1)(qn − q) · · · (qn − q 

. 
(qk − 1)(qk − q) · · · (qk − qk−1) � � 

n 
With a tiny bit of simplification, this is exactly the definition of the q-binomial coeÿcient ! It’s only for q prime 

k 
q 

powers though. 

Here’s another way to use a notion from linear algebra! 

Solution 2. We can transform A into reduced row-echelon form. The idea is to use Gaussian elimination. 
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Fact 8 

This was developed by Newton in 1670, then also Gauss in 1810, and also Jordan in 1888), but also it was known to 

Chinese mathematicians in 179 AD or even 150 BC. Basically, ancient mathematicians already knew about this. 

Here’s the general idea: find the first nonzero column. Make the top left corner 1 with row operations if at least one 

entry in the first column is 1. This can kill all entries below it. Move on to the next column, and either kill everything in 

the lower columns or start a new pivot. 

= 5, n = 10, an example of a reduced form matrix is 2 For example, for k 3 
1 ∗ 0 ∗ ∗ 0 0 ∗ 0 ∗ 
0 0 1 ∗ ∗ 0 0 ∗ 0 ∗ 
0 0 0 0 0 1 0 ∗ 0 ∗ 
0 0 0 0 0 0 1 ∗ 0 ∗ 
0 0 0 0 0 0 0 0 1 ∗ 

The 1s are called pivots. The pivot columns are pretty boring, so we can just remove them: 3 2 

66664 
77775 

66664 
∗ ∗ ∗ ∗ ∗ 
0 ∗ ∗ ∗ ∗ 
0 0 0 ∗ ∗ 
0 0 0 ∗ ∗ 
0 0 0 0 ∗ 

77775 

Fact 9 

Does this remind us of anything? One student once said an American flag, but the idea is that it looks like a Young 

diagram! 

So how many such shapes are there? It’s the number of tableaux that fit in an k × (n − k) rectangle! So since the ∗s 
can be anything in our matrices, we again have 

Theorem 10 

The number of elements in the Grassmannian Grkn(Fq ) is X 
|λ| q . 

λ⊆k×(n−k) 

So we’ve showed the identity that we want for any q is a power of a prime. To finish, we go back to Euclid! 

Fact 11 (300 BC, Euclid) 

There are infinitely many prime numbers. 

(Proof: assume finitely many, multiply all together and add 1. This new number is not divisible by any primes, contradiction.) 

We also use a fact from algebra: 
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Fact 12 

If two rational expressions with integer coeÿcients f (q) and g(q) are identical on infinitely many values, they are the 

same on all values of q! 

This means that we have our result: 

Corollary 13 

For all values of n, k, q, � � 
n X 

|λ| = q . 
k 
q λ⊆k×(n−k) 

What’s left is unimodality, but we’ll do that later. Here’s a fun fact: 

Definition 14 

Given a permutation w = (w1, · · · , wn) ∈ Sn, (i , j) is an inversion of w if i < j and wi > wj . Denote inv(w) to be 

the number of inversions of w . 

Example 15 

inv(312675) is 4: 31, 32, 65, 75. 

Theorem 16 

We have X 
inv(w ) [n]q ! = q . 

w ∈Sn 

So the size of the Young diagram plays the same role as the number of inversions! We’ll see that there’s something 

more general going on in the future. 

Proof. We will prove this by induction. How do we grow a permutation? Start with u ∈ Sn−1, and then we can add n in n 

di˙erent places. If it goes at the end, it adds no inversions: if we add it second-to-last, we get 1 inversion, and so on. So 

this multiplies on a factor of (1 + q + · · · + qn−1), which is exactly what we want: the q-number for n. 

4 



  
 

 
  

            

 
 

 
  

         

 

 
 

 

MIT OpenCourseWare 
https://ocw.mit.edu 

18.212 Algebraic Combinatorics 
Spring 2019 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu
https://ocw.mit.edu/terms

	February 22, 2019



