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Last lecture, we found that we could write the reduced Laplacian matrix from the matrix tree theorem as 

˜ ˜ B̃T L = B · , 

where B̃ is our oriented incidence matrix with one row removed. This means that B̃ is an (n − 1) × m matrix, where n is 

the number of vertices in our graph and m is the number of edges. 

By the Cauchy-Binet formula, this can be written as a sum. If E is the set of edges, X 
det(L̃) = det(B̃ · B̃T ) = det B̃S 

S⊂E 
|S|=n−1 

�2 
(where the square comes from det A = det AT for a square matrix). Our goal is to show that this is the number of spanning 

trees! 

Lemma 1 

The determinant 

det B̃S = 

8< : ±1 S is the edges of a spanning tree 

0 otherwise. 

Note that this lemma finishes the problem, because each spanning tree gives (±1)2 = 1, and everything else gives 0. 

Proof. For example, consider our graph G: 
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This has the oriented incidence matrix (with columns a, b, c, d, e, f in that order) 0 1 
1 −1 0 0 0 0 
−1 0 −1 −1 1 0 

B = 
BB@ CCA 0 1 1 1 0 1 
0 0 0 0 −1 −1 
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and let’s let B̃ be B with the last row removed. Now note that the determinant 

B{a,b,c}) = 0 det( ̃  

because the graph formed by a, b, c is not a tree. Specifically, this is because we have a cycle! The column vectors 
~ a~ + b − c~ = 0, and therefore the columns are linearly dependent. 

In general, if we take a cycle with C = e1, · · · , ek , pick some orientation of the cycle. Then there will be some relation 

±e~ 1 ± e~ 2 · · · ± e~ k = 0, 

where the ±s are + if the edges agree with C’s orientation and − otherwise! So the rows are dependent, and now we’ve 

proved the “otherwise” part of the claim. 

Now let’s try to investigate the others: if we take the determinant 0 1 
1 0 0 

B{a,c,f }) = det det( ̃ @ −1 −1 0 A = ±1. 
0 1 1 

One way to think of this is that we can always pick a vertex which is a leaf, so that will only have one entry! We can do 

row and column operations to make that the top left corner, and now we can just use induction. 

Formally, let S be some edges that form a spanning tree. All trees on at least two vertices have at least two leaves, so 

pick any leaf ` such that ` is not the index of the removed row. Then the `th row of the matrix B̃S has only one nonzero 

entry, and it is a ±1. Expanding out the determinant by this row, the determinant 

det(B̃S) = ± det B0 , 

where B0 is an (n − 2) × (n − 2) matrix. This corresponds to a smaller tree, so we can use induction! Eventually, we get 

to a tree on 2 vertices, which has determinant ±1, and we’re done! 

Let’s think about some generalizations: first of all, let’s make a weighted version of the matrix tree theorem. Suppose 

that to every edge e of G, we assign a weight xe , and define the weight of a spanning tree Y 
wt(T ) = xe . 

e edge of T 

Note that this is a product over edges, not a product over vertices (in contrast to the Cayley formula)! Analogously to 

Cayley, though, we can define a polynomial X 
FG = wt(T ) 

T spanning tree 

Our goal is to find this polynomial FG . Similarly, we can also define a weighted Laplacian matrix: 

Definition 2 

Given a weighted graph {G, {xe }}, we define the weighted Laplacian Li j via 8P 
e incident to xe i = j >< vertex i 

Li j = −xe e = (i , j), i 6= j . >:
0 otherwise 

Theorem 3 (Weighted matrix tree theorem) 
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The polynomial 

FG = det(L̃), 

where we remove one row and one column to L. 

Let’s do an example! If we have a weighted graph 

x 
1 2 

z y t 

3 4 u 

Then our Laplacian is 1 0 BB@ 
x + y −x −y 0 
−x x + z + t −z −t 
−y −z y + z + u −u 
0 −t −u u + t 

CCA L = , 

and we claim that any 3 × 3 minor is actually going to give us the sum of weights of all spanning trees. 

Proof. We can think of this graph as a network - specifically, we can think of our weights as conductances of edges. But 

there’s another way to think of this: if the weights are all nonnegative integers, a weight of k could be thought of as k 

edges between the relevant vertices! 

In that case, FG is just the number of spanning trees of Gm , the graph where each edge e is replaced by xe unweighted 

copies of the edge. Thus we can use the regular matrix tree theorem to prove this for all positive integers! 

And now the weighted matrix tree theorem holds in general: we have two polynomials that agree on infinitely many 

points, so they must be the same polynomial. 

Here’s another generalization to directed graphs! Let G be a digraph (directed graph) with no loops, but where multiple 

edges are allowed. There’s two di˙erent versions of “spanning trees” for our diagraph: 

• An out-tree oriented at a vertex r is a spanning tree of G in the usual undirected sense, except that for every vertex 

i , all edges in the shortest path from r to i are directed away from the root. 
• An in-tree is the same, except that all edges in the path from r to i are directed toward the root instead. 

Note that these numbers may not be equal, especially for a given vertex r . But we claim that we can still find them as 

the determinant of some matrix! We again have two versions of our Laplacian matrix: we define Lin and Lout: 8< 
−number of directed edges i → j i =6 j. 

(Lin)i j = 
indegree(i) i = j : 

8< : outdegree(i) i = j 

−number of directed edges i → j i =6 j. 
(Lout)i j = 

Dout − A, Lin So here Lout = = Din − A, where A is the directed adjacency matrix. (Note that the outdegree is the 

number of edges leaving a vertex, and the indegree is the number of edges entering a vertex.) 

These vertices may not be symmetric anymore, but they still have some important properties! For example, all column 

sums of Lout are zero, but not necessarily row sums, and vice versa for Lin . 
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Definition 4 

Given a square matrix L, define Li j = (−1)i j det(L∗), where L∗ is the matrix L with the ith row and jth column 

removed. 

Theorem 5 (Directed Matrix Tree Theorem) 

The number of out-trees rooted at r , is the cofactor 

(Lin)i r 

for any i = 1, 2, · · · , n, and the number of in-trees rooted at r is 

(Lout)r i 

for any i = 1, 2, · · · , n. 

We’ll see how to prove this next time! This is even more general, but the proof is actually easier. 
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