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PROFESSOR STRANG: Ok, so this is I could say delta function day. Break from linear 
algebra mostly. So we're looking on another type of right-hand side. Before in the 
differential equation and in the difference equation. So the right-hand sides up to 
now, the one we looked at was a uniform constant load second derivative equal one. 
Now a point load. Well in a way, we're now solving a whole bunch of problems 
because the point load can be in different places. So instead of solving one problem 
with one on the right-hand side, we're solving with a delta function. 

Now a delta function is, you probably have seen and heard the words and seen the 
symbol, but maybe not done much with a delta function. It takes a little practice but 
it's really worth it. It's a great model of maybe what can't quite happen physically, to 
have a load acting exactly at a point and nowhere else. So the delta function is, I 
drew it's picture, the delta function is zero, this is delta of x is zero except at that 
one point, the origin, x=0, and then all along back to zero again. So nothing's 
happening, no load except at that one point. And let me just, so there's no hesitation 
in when I change from x to x-a, what does that do to a graph? If I have a function of 
x and I instead shift the function to f(x-a), I shift x to x-a, well in this case, and in all 
cases, it will just shift the graph. So if I drew a picture of delta, of x-a, the load now 
would happen when this is zero, because it's delta at zero is the impulse, and now 
this is zero at x=a. In other words, the load moved to the point a. So there is the 
shifting load, but the load could fall anywhere between zero and one. So delta of x, 
the load actually falls at zero. Well we don't quite want that load at the boundary. So 
let's think of the point a, the load point as somewhere between zero and one. 

Can I just take a little time to recall the main fact about delta functions? When I say 
recall, it could very well be new to you. So that's what the delta function, that's my 
best graph of the delta function. But of course I'm, in using the word function, I'm 
kind of breaking the rules because no function, I mean the function is, functions can 
be zero there, can be zero there, but they're not supposed to be infinite at a single 
point in between, but this one is. Let me go back to delta of x to match these 
figures. Of course, they would also just shift along by a. Maybe no harm in that. 
Sorry, I'll stay there and now I want to integrate. And that's when a delta function 
comes into its own. It's value of infinity is a little bit uncertain. What does that 
mean? But when we integrate it, what's the key fact about delta function? That the 
integral of a delta function from, let's say, let's integrate the whole thing, we can 
safely start way at the far left and go away to the far right because it's zero all the 
time there except at one point, and you know. So what's the area under that spike? 
It is one. That's right. 
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So that's the fact, the sort of central fact about a delta function . That the area is 
one. Oh well, let me, while I'm really writing down the central fact, let me write it 
more specifically, more generally. Suppose I integrate, and this is delta functions 
now really showing, if I integrate a delta function against some, at times, some nice 
function. Now have you ever thought about that? What would be the answer if I 
integrate the delta function against some nice function? So I'm still getting zero from 
this term all the way along until I hit the spike and then after it goes back to zero 
again. So, whatever, it's gotta be at the spike, at x=0, because I put the spike here 
at zero, the impulse. So what do you think's the answer for that one? Yeah, It's the 
function. So, yes, tell me again and I'll write it down. g, it's a value of this function g. 
We don't care what it is to the left and to the right at zero because it's really at zero 
that this thing turns on and its value at that point is just, gives us the amplitude of 
the impulse, which is g(0). And of course if g is the constant function one, I'm back 
to that formula. But this is maybe the thing to watch for. Actually there's a lot built 
into that little thing. We'll come back to that. 

So that's delta functions integrated and now here are some pictures. These are the 
good pictures. So here's one integral of the delta function. It's a step function. And 
the step of course will occur at the point a if the integral of the delta function at a 
point a will be the step function. Where the action happens. The jump happens, I 
could call it a jump function. At that point a. Because, just for the reason we said. 
That if we integrate, the integral is zero. And then as soon as our integral passes this 
point, so this is integral of the, this is, I integrated. I integrate to get to this picture. 
I start with that delta function and I integrate and it suddenly jumps to one as soon 
as the integral goes past the spike, the impulse. 

So a step function. Very handy function, step function. Sometimes called a heavy 
side function named after the guy who, the electrical engineer I think who first sort 
of work out the rules for using these. Let's integrate one more time because we have 
second order equations, second derivatives, so we better integrate twice to see what 
sort of answer we get. Now integrate the step function. So again, the integral is zero 
all the way to the left, so I'm still getting zero, but now beyond this point I'm 
integrating one. And the integral of one is x. So now that I would call a ramp 
function. That's a nice short word for this valuable function. A ramp function is the 
function that's zero and then x. So tell me about that ramp function. Just think about 
it. what happens to its derivative at the point a? As I run along and I hit this key 
point, what happens to the derivative of the ramp? What does the derivative do? 
Focus on that ramp now. What does the derivative do at that point? It jumps. The 
derivative jumps the slope. Is the derivative, the slope jumps from zero and here the 
slope is one. And of course that's what that's telling us. Here's the picture of the 
derivative. 

What does the second derivative do? Well, since I integrated twice I guess going 
back two steps I'll find out what the second derivative is. So the first derivative takes 
a jump. The second derivative is the derivative of that jump, so it's got the impulse. 
So the second derivative, it's a straight line here, second derivative a straight line. 
This is straight line here, second derivative of a straight line is a straight line. But at 
that point the first derivative jumps, the second derivative has that delta function. In 
other words, that's that stuff. If I keep integrating and I don't need higher integrals 
in today's lecture, another integral would be what? If I integrate this function, then 
it's running along the zero. What's the integral of this? Doesn't quite turn that 
steeply. What's that curve there? If I've integrated the ramp. Here is the integral. 
First, the next step up, the integral of the ramp would be? It'll be x squared, yeah, 



it'll be a parabola. x squared over two, the integral of that. And now what do I get 
when I integrate this one? I get something very important. Not important today, but 
important in a few weeks. And very useful in computing. These have turned out to 
be just the right thing. So again, I'm integrating that. Everybody can tell me, what is 
that? What's that curve now? It's the next integral of course. The area under that will 
be x cubed over six. 

So now that is a function. Yeah, it's worth maybe just for practice. What's the deal 
with that function? That's pretty smooth function. Because it certainly passes right, it 
meets at that point. The first derivative meets at that point. The second derivative 
meets at that point. The third derivative does what? Of this line. The third derivative 
takes three steps back down the line and you see that the third derivative jumps. 
Right? The third derivative of that is the third derivative, would be, shall I for C, for 
cubic spline or something, the third derivative will be zero there. And the third 
derivative of that is exactly like back to that, back to that, back to one is one. So the 
third derivative. so the cubic spline's so smooth your eye doesn't see that. They're 
very useful for drawing many, many purposes. CAD programs would use such things 
constantly because they're convenient, they have nice pieces that you can fit 
together and they fit together very smoothly. But they really are two separate 
functions. So that's up to cubic spline. But our focus is-

These would solve, what equations would those solve? Well, that takes how many 
derivatives to get to a delta? So what would be the equation? What would be the 
right-hand side? Let me take the fourth derivative. I'll just ask the question that 
way. What would be the fourth derivative of that cubic spline? A delta, right? Four 
steps back. So what is, physically, what are we seeing here? Do you recognize what 
kind? if I ask now people in mechanics, When will we meet a fourth order equation? 
Fourth derivative equals a load. Anybody know the physical situation where fourth 
derivative? Beams, yeah. It's the equation for a beam. A beam has, the bending of a 
beam. So it's a beam. This eraser isn't too very much like a beam, but anyway I put 
the chalk on it, well nothing happened. Sit on it, whatever. It'll bend and that 
bending will be given by a beam equation. So later we'll meet the beam equation. So 
most equations of physics, mechanics, biology, everything are second order, 
Newton's Laws often the reason. But we get up to fourth order sometimes. And very 
seldom get higher. Hopefully. Beams or plates, that table would be a plate and it 
would have a fourth order equation. 

Let's start solving this problem. What's the solution, what's the general solution to 
that equation? Minus the second derivative, so notice the minus that I like, and the 
load has now moved to the point a. So the solution u(x), let's write down all 
solutions. Tell me one solution, first. One particular solution. What is one function for 
which minus the second derivative would be the delta. That's what we've got over 
there. So just bring that blackboard over here. Change its sign because that minus, 
and what are you going to tell me? Minus a ramp. Minus a ramp. And the ramp, of 
course, will ramp up at the point a so that it's the second derivative of that, the 
second derivative of R will be delta. The minus is correct and the point is correct. 
Now does that solve our problem? No. The ramp is going upwards. It's not zero. 
What am I forgetting? What do I not yet have? There's more to this solution. Just as 
there was for a uniform load. What was the more? Constant and I want two 
homogeneous solutions, null solutions, two solutions with second derivative equal 
zero. One of them is C and the other one is Dx. That's the whole solution. So what I 
want to, I mean we need that C+Dx. We've got two boundary conditions to satisfy, 



just as before. So I need two constants, that'll do it perfectly and I'll get an exact 
answer. And so this is a ramp. 

Oh yeah. Before I go further, how would I think about this? This is a ramp that turns 
which way? Down. Right? With that minus sign, that ramp turns down at the point 
x=a. Right? It's derivative goes from zero to minus one. The slope of this guy drops 
by one because of the minus sign. Sorry the slope, of the ramp function of minus the 
ramp. It goes at zero, drops by one. And what this is going to do is take that ramp 
and adjust it to go through the fixed ends. Oh, let's just do it. Let's just do it. What 
are C and D? What are C and D? My point a-- let me draw a graph, that's always the 
best thing. Always draw a graph of these solutions. So let me put in the point a. So 
I'm drawing now a picture of the solution from zero to one. I'll graph it. What do I 
have here? Shall we just plug in the boundary conditions and find C and D? That's 
the direct way. What is C? C I'm going to plug in. Hopefully I might find it from just 
the first boundary condition. If I'm starting from zero, well this guy certainly starts at 
zero, right? The ramp hasn't done anything until it gets to a. And this guy is certainly 
zero. So what is C? Gone, right. Now what is D? Well alright, what's D? Let's see. Let 
me draw the-- so there's a Dx and D won't be zero. I want that thing to be zero at 
point one. So I want to determine D. Let me determine D. So what is minus the 
ramp at x=1? I'm plugging in x=1. Is that right? I'm going straight forward here. 
Plugging in x=1 into this boundary condition, ready for this guy. What's the ramp? 
So it's minus and the ramp is, well if the ramp is shifted over then that's shifted 
over. So at x=1, what's the ramp? How high has that ramp gone? 1-a. Right? The 
ramp is x-a. At the point x=1 it will be 1-a. So I think I get 1, -1 - a out of that. 
Minus the ramp plus D times what? One, I'm plugging in x=1. And that's supposed to 
equal? Zero, good. 

So I'm doing this sort of the systematic way of writing down the general solution. 
Discovering that D, what do I discover D is? Put it on the other side. D is 1-a. And of 
course, don't forget that it's multiplying the x. Let me just draw the picture. Here's 
how I think about it. The solution is, away from x=a, what does the solution look 
like? To the left of x=a what's my graph going to be? It's going to be? A straight line, 
right? To the left of here there is no load. The equation is second derivative equals 
zero. The solution to that is a straight line. In other words, until I get to a, this thing 
hasn't started. It's only this straight line. The solution does something like that. It's a 
straight line. And I guess, actually, that's what it is. Because the C isn't here and 
that's all we've got left. So that's that straight line. 

What is it for the second half? Tell me what the solution looks like in the second half. 
In between a and one. It's going downhill. Why? Because it gotta get back to zero. 
And how's it going downhill? It has to be linear. In this region, has to be linear. Why? 
How do I know it's linear here? Because one way is to say the equation in that region 
is second derivative equal zero. Second derivative equal zero, straight line. This is 
my solution. It's (1-a)x here and it's whatever it is to get back to zero. What will it 
take to get back to zero? Let's see. Well we could plug in, we've got one expression 
here. Or I could just look at that. I could say, okay what's the equation for the 
straight line that's at this point, what is the, yeah, it's (1-a)x. I want it to be linear. I 
want it to get to zero. Let's see. If I want that, it would be great to have 1-x times 
something. I have to figure out what. Because with the 1-x that x=1, that'll drop off. 
That's linear. What number, what's the key here? That slope, I want to match them 
up there. And that's the point x=a. This is supposed to match that at x=a. Do you 
have an idea for what I should take? What do I put right there? a. Look at the 



symmetry in those two sides. (1-a)x going up. (1-x)a x going down. At x=a it hits 
that point, right. 

So we've solved it. We could think about this different ways. I could have got that 1
x, let's see, I could have got it from the formula. In a way I like to get it from the 
picture, I see it, sort of, I see the point. What happened at that point? What are the 
jump conditions? This is another way to ask, to see how the delta function works. 
What are they jump conditions? I want to know, when I ask about jump conditions, I 
want to know what are the conditions on u(x), the displacement? What are the 
conditions on the slope, u'(x). That'll be the strain when we're speaking about 
elasticity. Just for u(x), what's the statement about u(x) from the left and from the 
right at that critical point, the point of the load. From the left and from the right u(x) 
is? The same. u(x) matches up. u(x) from the left is that height. u(x) from the right 
is that. 

I want to write down those jump conditions. Because that's another way to see this. 
u(x), u(a) from the left should equal u-- do you want me to say u is continuous? I'll 
just say it in words. u(x) is continuous, that just means it doesn't jump, at x=a. So 
that's, you could say that's a non-jump condition. The function itself doesn't jump. 
Why not? Because we're talking about some elastic bar on which we put a point load. 
The thing isn't going to break. The displacement is going to be continuous. But 
what's the condition on u'(x), the derivative, the slope? So that's the function and 
now tell me what's the deal on the slope? What's the comparison between the-- I 
have a slope of whatever it is going along here and I have a slope of a new slope. So 
u'(x), the slope jumps, right? And how much does it jump? Minus one. It drops by 
one. The slope, because of my minus. So this tells me that, yeah, let me write that 
down. u'(x) drops by one. 

This is another way to say what the equation is asking. The equation is looking for 
two pieces of straight lines that meet at a but their slope drops by one. By the way, 
what were the slopes? It's good to graph the slopes, too. Let me graph the slopes. 
The slope u', the derivative du/dx. What's the slope here? Slope is 1-a at this point, 
right? The derivative is 1-a along here. So slope is 1-a. And now at x=a the slope 
changes to this one. And what's the slope of that second part? Minus a. Look. It did 
it right. Minus a is the slope along here. Do you see 1-a? It dropped by one. The one 
disappeared to leave a slope of minus a. 

I guess if I just imagine a bar. I'm fixing it at both ends. There's a bar. I'm just 
thinking for people who like to see a physical picture of what's happening, that's 
what this is, we'll do it properly very, very soon. I've got a bar. It's a very light bar. 
It's weight is not a problem here. But it's got a load at the point. So I'll measure a 
going downwards. And at the point x=a I'm hanging a heavy load. A load. How do I 
draw a load? Maybe I'll make a big weight or something. What's going to happen to 
this dumb bar when I do that? Just tell me physically. What's going to happen? 
What's going to happen above the load? It's going to stretch, right, tension. The load 
is going to pull the bar down, it's going to stretch this part. And because nothing 
special is happening, it's going to stretch it linearly. And then what's going to happen 
below the load? Compression. So the slope will go negative. And nothing special 
happened so the slope will be negative but it'll be constant. The slope will drop from 
this to this. The displacement, that point will go down a little bit. That little bit it goes 
down is actually the height of this, because that's the displacement. It'll go down a 
little bit. It'll stretch above, it'll compress below, and we see that in that picture of 
the displacement. The displacement's all down. Right? Displacement, you know, 



nature is still going to, all the bar is going to move down. That's why this function 
doesn't, this function, the displacement function is positive. It goes all down. But the 
slope function is positive here, so tension is positive slope. Stretch and compression 
is negative. Well all that to solve this equation. 

Maybe while we're on a roll, let's solve the free-fixed guy. So this is our-- might as 
well be systematic. This with the fixed-fixed problem. Let me below it solve the free-
fixed problem. So it'll be u''. That's the second derivative equals delta at x-a. Same 
set up. But now the top end is, so it's free at the top. What does that mean? Slope is 
zero at the top but is still fixed at the bottom. So this will be now free-fixed. Let me 
go straight to the picture. Let me go straight to the picture of u(x). So there is x=0, 
there's x=1, here's the load at a. What's up? And while you're thinking about that, 
let me draw a picture to match this picture. A bar fixed at the bottom but not at the 
top. And it's got its load here hanging down. But let's do it math first, and then check 
with the picture. 

What do we got, two or three ways now to try to get the answer? The systematic 
way would be to write down this solution and plug in the two boundary conditions. 
That'd be a straightforward way. Yeah, we could even start by that. So u(x) is the 
particular solution, the ramp plus any Cx+D. And just plug in x=0 that'll be easy. If I 
plug in x=0 in the free condition, what does that tell me? At x=0, this corner, this 
ramp hasn't started so the slope is zero. The slope of the constant is zero. What do I 
learn from this boundary condition? u'(0)=0. That C is zero. Before I learned that D 
was zero, but now from that condition I'm going to learn C is zero. 

Do the picture for me. Do the picture for me. What's the graph of-- this is a graph of 
u(x). Remember now it starts from zero slope because it's free at the top. What does 
the graph look like in the first part? It's a straight line, has to be a straight line 
because there's no force. And what kind of a line? It's going to be horizontal because 
it starts off horizontal. The slope has to be zero at zero and nothing changes until a. 
So it comes along there. Right? Now I've started out with the right, left, the correct 
boundary condition at zero, which was no slope. And now what's it going to do the 
other half? From a to one. It's going to be again, it'll be a straight line, right? 
Because there's no force there. And what happens at-- all the action of course is at 
this point a, and what action is it? Tell me what sort of a line. How do I finish the 
picture? What do I do? I start here, right? Because the bar's not falling apart. u is 
continuous. I don't get a gap suddenly. And now what do I do from there? Only thing 
I can possibly do, because I have to end up here and it has to be a straight line, 
that's it. That's what the picture will have to look like. What does that correspond to 
in the picture for the bar? Well what happens with this bar? Above the weight what's 
what happens to this top part of the bar in that picture? And what happens to the 
lower part of the bar? So this was at the point x=a, this is x=0, this is x=1. What 
happens above the bar, above the weight? It just, a rigid motion, just goes down. 
Because what happens below the weight? The same compression or compression still 
happening. This is still squeezed. Shall I try to draw it? So this is after the weight. 
This got squeezed but this part did not get squeezed. And that's what we're seeing 
here. A fixed displacement. So this means, that picture means that all the pieces of 
the bar here got moved down by the same amount, whatever this, we don't know 
that number yet. And then below it they got compressed. Well we're almost there 
but we don't yet have that solution. 

Come back to this picture. u(x) is continuous, got it. And what's the real condition 
that's going to determine where we are, what those heights are, the numbers in 



there. It's gotta look like that, but we get more than that, we gotta no what are the 
actual, what is that height. What is this? What's the slope? Here the slope is zero. 
Here the slope is what? What's the slope in the second part? That's the key. And you 
know what it has to be because what happens to the slope? If I have the second 
derivative as a delta function with that minus sign, the slope drops by one. And the 
slope here is zero, so the slope here is minus one. And now it has to get through 
there, so what is the function? What's the function that has a slope of minus one and 
comes down to zero? It's gotta have a minus x in it and what's the constant to make 
it come out right? What do I write now here for u(x). 1-x. That has a slope of minus 
one, the derivative is minus one, at x=1 it comes to zero, that's it. And what do I 
write, what's u(x) up here? And therefore, right there? What's the displacement 
there, of all this bit that moves down, how much does it move down? 1-a. Why 1-a? 
That's the right answer. 1-a. Why's that? Because it had to match up at x=a. At 
x=a, this and that match up. At x=a, that slope, that function and that function 
match up. 

So the slope picture is zero and, oh I'm sorry, can't draw it because I'm at the 
bottom of the board. The slope picture, maybe I can draw it here, the slope picture is 
zero along here and then it drops by one to 1-a. So that's a picture of u'. Zero and 
minus one. This is the thing to look at. That's hard work. When you're seeing delta 
functions the first time. But of course the functions did not get complicated. We kept 
a clean example. And which we matched up with a figure and we've got the answer 
and we've got a couple of ways to do it. One is this standard, systematic, plug-in 
boundary condition way. The other way is this. u(x) does something here, then the 
slope has to drop by one. And that's the key to everything with a boundary 
condition. So in a way, we have a piece to the left and a piece to the right. Two 
constants here, two constants here, and somewhere there are four conditions that 
settle those four constants. You know, we could have a straight line here, a straight 
line here, that's two and two. But what are the four conditions that settle those four 
constants? Well we have a boundary condition here, that's one. Boundary condition 
here is two. We need two more conditions to settle the two pairs of constants, and 
there they are. Two conditions at the jump, at the discontinuity. 

Now I've got to do the discrete case. Are you up for the discrete case? The case 
where we're doing, we have a difference equation, so we're doing KU equal a column 
of the identity. Column of I. Let me take a specific column. Say, . Let's suppose we 
have five. I'm going to draw a picture now. We have five because I made it five by 
five. One, two, three, four, five, here is zero and here is six. So h is 1/(5+1), 1/6, 
that's the delta x. So what does my equation say? Remember what K is. U is the n 
u_1, u_2, u_3, u_4, and u_5, the unknowns. K is our old friend with twos and minus 
ones and minus ones. I'm going to find the solution. And this'll be the solution that 
has a load at this point. This is like my point a, right? Here in the continuous case, a 
could run anywhere between zero and one. In the discrete case, I've got five 
possible load points and I've picked the second one. Five columns of the identity 
matrix, five places to put that one, I put it there. 

Now can I draw the picture here? Which should we do first? Should we do free-fixed? 
Because that came out even easier than fixed-fixed. Notice the solution here had two 
parts. This is the way I would write that answer. Because you could draw a picture, 
but if you want to write the formula, what would I do? I would break it into two 
pieces. 1-a up to the point a because that's what it was running along here. And then 
down here it was 1-x, x>=a. That's important to mention. You have to have some 
guidance on how to write the answer. And when the answer has two parts, this is a 



good way to write it, in two parts. It's a little too, you're compressing it too much to 
write, to use that ramp function. Better to split it apart into before a and after a. 
What's going to happen over here? 

Oh yeah, can we take a shot at this problem? And let me mention again in the 
review that'll be in here this afternoon and every Wednesday afternoon I'll just be 
ready for questions. Please bring questions. They can be questions on the 
homework. Even better if they're questions on other problems, questions on the 
lecture. Questions are essential to make that help session helpful. 

What do you think's cooking here? At a typical, somewhere in the middle here, I'm 
going to draw the u's. Shall I just draw them? And now what's my condition? I gotta 
put the boundary conditions on. Oh, I have put the boundary conditions on it. By 
putting that two there, I'm up to here. Ok, let's do that one. When I chose K and put 
a two in there I was picking the fixed-fixed boundary condition. So can I just say it's 
going to be beautiful. The solution over there is going to look like this. The solution 
over here is going to be up, up, up. It's going to be a straight line but only points in 
a line and it'll be straight line down. That value, that value, that value. Those will be 
u_1, u_2, u_3, u_4, and u_5. And once more, this is going to drop by one again. 
Actually I didn't have to redraw the picture. It falls right on. In case x is 2/6 so that 
it fits that picture, I'm claiming we have another extremely lucky case. If we can use 
the word lucky for math. 

That I'm claiming that the way, you remember for the uniform load with a one, when 
we had second derivative equal one, the solution was a perfect parabola and the 
discrete solution, the difference equation was right on the parabola for this fixed-
fixed case. It's going to happen again. It won't always happen. Those are the only 
two important right-hand sides I know. They're the two most important right-hand 
sides and those are the two lucky ones. If we have a constant that lies right on a 
parabola, if we have a delta function, it lies right on a ramp. And there it is. So that's 
what the solution looks like. 

Now, I have to figure out what these numbers are, I guess. Yes, what are those 
numbers? Oh, well. Actually, if it falls right on, I know the numbers. So a is 2/6. So 
let me keep 2/6. So a is 2/6. That's that value. So let me say what I think U is. So 
this was a picture of U. That's u_1, 2, 3, 4, and 5 and now I think it lies right on 
that. So it's going to be (1-2/6)x going up and (1-x)2/6 going down. My point is that 
I'll be able to figure out what that-- this is u, this is the u. You're going to say, why? 
Let me pause before putting in numbers and say why is it, how do I know that the 
solution is right on the function, the continuous solution. 

Well, can I draw a set of pictures just like those guys for discrete? Yeah, let me just 
draw those for discrete here. That shows you the magic. So there is a, I'm going to 
draw a vector now. I'm going to have to lift the chalk, it won't be a function and it'll 
be the delta vector. So it'll be the delta vector, delta with, so there is point one. 
Zero, one, two, up to six. It'll be the delta vector. Well if I just draw the delta vector, 
the delta vector has a one there. So this is the delta vector. Do I need? Well you can 
see that the delta vector is now going to be the vector of all zeroes and it's got a one 
at the key, at the impulse and then zero. So it's a discrete impulse. That would be a 
better word. Discrete impulse. Impulse at zero. So let's stay with an impulse at zero. 

Alright. What's my next picture? Again let me put in zero. One, two, three, onwards. 
Minus one, so on. What do I want to do now? What do I draw second? I always look 



over here. What did I draw second over here? The step. Now why did I draw a step 
function? How did I get from here to here? I integrate. I took the integral. So how 
will I get from here to this picture? I don't integrate, I add, sum. So coming along 
from the left, all these all along here, this sum is all zero because it was always zero. 
So it's zero, zero, zero, zero. And then, whoops, wait a minute. It says it a one 
there? Yeah, I think it must be. So here it wasn't a zero, wrong. Here it's a one. And 
what is it next? What's next to it? One, because I'm adding more and more zeroes 
but I have that one now, okay. A discrete step. It's a discrete step, zeroes and then 
ones. Now comes the second. So what am I going to call that? A step, right? It'll be a 
step function, step vector. If the sums of the delta vector gave me the step vector, 
how do I go the other way? What do I do to the step vector to get back to the delta 
vector? Differences, right? Sums in one direction, differences in the other. So the 
differences of the step vector are the delta vector. The step is the sum of the deltas 
and the delta is the differences of the step. 

Now for the crucial next guy. What's it going to be? I add. Wait a minute. What's up? 
I'm looking for that picture. Do I get it? Yeah, I hope so. Oh, look, we ran out of 
time. I don't have to do this, but I will. So as I add I get zeroes and then it's one, 
and then I add on one more one. Look. You see what's happening. I right along at 
zero but I'm going to look at the book to see whether that jump should come here or 
here. So I've got a little bit of this to finish next time and I'm open for any questions 
this afternoon. Okay, thanks and sorry to keep you late. 


