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PROFESSOR STRANG: OK, let's start with a review and preview. I put a P up there 
because we're really looking into the Fourier part that just started this morning. And 
there'll be some homework from these early sections about the Fourier stuff, so we 
maybe we should just do a few of those problems or discuss here today. Just in 
advance. Can I say one thing about MATLAB and the MATLAB homework first? And 
maybe open a conversation about it? So there's really two different problems that 
I'm personally quite interested in. Two model, I'll say model problems because 
they're there for regular polyons in a circle. And I'll draw an octagon again, so M 
sides. And I'm interested in if M goes to infinity. And I'm interested in two different 
problems. So one of them is our MATLAB problem, minus is Laplace's equation. What 
was it, four? With u=0 on the circle. OK, so that's our problem, totally open for 
discussion. How many have started on that? Oh, good. OK. Well, then you all know 
more about it than I. And that's great. I'd be happy to learn. So have I said 
everything there? Yeah, we've got Poisson's equation inside. We've got u=0 on the 
circle, so the problem's well defined and the solution should be one minus x squared 
minus y squared. So that's the correct solution. 

Maybe I can also tell you about the second problem that I'm interested in. Because it 
hasn't come up in class but it's very important, too. It would be the eigenvalue 
problem. So this is problem number one, the steady state problem when you've got 
a source and you want to find out the temperature distribution. The problem number 
two would be the eigenvalue problem, -u_xx-u_yy. I take those minuses so that the 
eigenvalue will be positive. So that's what the eigenvalue problem might look like. 
And again let me say, with u=0 on the boundary. On the third one. OK, so a person 
would say this is Laplace's eigenvalue problem because we have Laplace's equation. 
We've got eigenvalue. As always, it's not linear because we have two unknowns, 
lambda's multiplying u. And we have boundary conditions, and this would describe 
the normal modes, for example, of a circular drum. If I had a drum, or a polygon 
drum. So maybe I connect to actually build the drum, I might fold in the sides there 
and have a polygon. And again, I hope that the eigenvalues of the polygon, this 
equation in the polygon, which are not known, by the way. To the best to my 
knowledge, we know it only for M=3, which would be an equilateral triangle, and 
M=4, which would be a square. And those eigenvalues, because of Fourier or 
something are humanly doable. But I think five on up is, I may be wrong about six 
I'm not sure about M=6, a hexagon sometimes gives you enough help. But beyond 
that you're on your own. With finite elements to help you. 

So there's a whole sequence of eigenfunctions, u, eigenvalues, lambda, just the way 
there were in one dimension. And on the circle they involve Bessel. That's where 
Bessel showed up. He figured out the functions and they're not especially nice 
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functions. But they're studied for centuries. Bessel functions come into that. But, 
here I have the same question. I mean, let me just say, for me this could be a UROP 
project if anybody was an undergraduate, or it could be a project over January or 
something. I'd like to know something about what happens as M goes to infinity as 
the polygon approaches the circle. So I'm hoping maybe on the homework that 
comes, if it's not too difficult, and maybe it's not, to let m go up a bit. There is one 
thing. That the code we're working with is linear elements, right? We're using linear 
finite elements. So we're not getting high accuracy. So I would really like to move up 
to quadratic elements, at least, you remember quadratic elements would be ones 
where - well, let me draw the one that we've drawn in class before. We only have to 
look at one triangle and then we cut it up into triangular elements by taking some 
pieces here, taking the points above, which I hope are now correct on the website. 
Connecting those edges, and then connecting these. Is that right? Is that our mesh? 
So that mesh is controlled by N. One, two, N points. Also, N is going to have to get 
large too, to give me accuracy. And another way toward more accuracy is, instead of 
linear elements, second degree. So do you remember I wrote those down? Let me 
take that little triangle out here as a bigger triangle. It would look something like 
that, I guess. The second degree elements have those six mesh points. You 
remember I drew those but we didn't really have time to get further with them. 

The trial functions phi, which are one at a typical mesh point and zero at all the 
others, they are computable. We're up to second degree, so it's a little, second 
degree things, then the first derivatives, which come into the integrations, are linear. 
And not constant. So a little bit harder. But finite elements, linear or quadratic. Or 
higher. Could be used for this problem. As we know, and for this problem. What I 
wanted to add, that I've not mentioned in class, and I think we may just not get a 
chance to do it, is what does the finite element method look like for an eigenvalue 
problem? Because eigenvalues are highly important. That's the different way to 
understand. There's the matrix K and its entries. But then there eigenvalues. And 
you might think that, what do you think is the discrete eigenvalue problem copying 
this one? Here's my point. Your first guess would be, well this is like K, right? This is 
like KU, right? (K2D)U, I should call it, maybe. Well, I'll call it K, because K2D I have 
specifically reserved for the Laplace stiffness matrix on a square mesh, square mesh 
with triangles, the K2D. That was one specific matrix for one specific mesh, and here 
we have a different mesh. So I should just call it K. Ok, I think if anybody was going 
to make a guess, they would say OK, KU=LAMBDA*U. Maybe I'll use capital 
LAMBDA, because I'm using capital U. Is this the finite element method eigenvalue 
problem. And if you answered yes, I would have to say, well that's a reasonable 
answer. But it's wrong. The eigenvalue problem, when I take the differential 
equation for the Laplace, Laplace's equation, lambda u on the right side, and I go to 
do finite elements, it produces K. Out of this stuff, out of the weak form, all that 
stuff. But it produces another matrix on the right-hand side from the constant term, 
and we have not really mentioned it, it's the mass matrix. 

So this, instead of just the identity here, there's a mass matrix. So that is the 
problem that you could do. I could've made a MATLAB project. I bet I'd do it next 
fall. right? You guys did the first one, this one. Or you are doing it now. And I'm 
going to pause in a minute for questions about it, or discussion of it. But this one 
brings in something called the mass matrix. So let me just say what those are. If I 
write down the entries in the mass matrix, you'll sort of get an idea of why they are. 
So what are the entries in the stiffness matrix? K_ij, you remember, is the integral of 
the d phi_i/dx, d phi_j/dx. Plus d phi_i/dy, d phi_j/dy, dxdy, and that's what's you're 
computing. And that's what that code is computing. And when phi is linear, phi 



linear, then slopes are constant. So all you have to do, and what that code in the 
book is doing, is figuring out what are the slopes. These things are constant, so we 
just need to know the area of the integration where we're integrating. The area, 
triangle by triangle. Fine. That's what we're doing. That's what that code is just set 
up to do. Now, I have to tell you what is M_ij, the mass matrix. I just think you don't 
want to have - we haven't done too badly with finite that elements in here. We did it 
in 1-D, where we got it kind of straight. And now we're seeing what it looks like 2-D. 
But I had not really mentioned a mass matrix. So here it comes. The mass matrix 
will be the integral of phi_i i times phi_j. dxdy. It's the zero order, no derivatives, 
just plain zero order, as you'd expect from the fact that the term in the continuous 
part is zero order. So it's this mass matrix that comes in. And maybe we could just 
look to see which entries will be zero and which will not. 

How sparse is it? What does the mass matrix look like? And can we just, let me do 1
D first. So there's a phi, right? There's another one. There's another one. So, what 
do you think about the mass matrix, one phi multiplied by another phi and 
integrated? Is it diagonal? No, because each phi overlaps its two neighbors. So tell 
me what kind of a matrix m is going to be? In 1-D. Tri-diagonal. It'll be tri-diagonal. 
Now, so was K. So K and M actually have non-zeroes in the same places. the same 
sparsity pattern. But, of course, not the same numbers in there. K had minus ones 
and twos and fours and minus ones. What can you tell me about this tri-diagonal 
matrix? When I integrate that against this, well, again I would do it element by 
element because this against this, they only overlap here. Right? I'll just draw the 
one place that they overlap. And what's the point? They're both positive. So the 
mass matrix is, its rows don't add to zero. Its rows tend to add to one. But it's not 
diagonal, that's the difference. OK, so I just felt I couldn't feel as though I'd done a 
decent job in describing finite elements if I didn't describe this. Didn't mention this 
mass matrix. And maybe I'd better say where it comes from. Because eigenvalue 
problems, it may come number two, but that's pretty high up the list. So let me tell 
you where does this mass matrix come from. First, let me tell you about eigenvalues 
of a, matrix eigenvalues. So the answer was, is this the finite element eigenvalue 
problem? Only if there's an M there. And now I want to, OK, first of all, what MATLAB 
command solves that problem? Let's just be a little practical for a moment. What 
MATLAB command gives me the matrix of eigenvectors, the matrix of eigenvalues 
would come from eig of what? I'd call this the generalized eigenvalue problem. 
Generalized because it's got somebody over here. 

And it's just K,M. Or of course you get the same answer, well you get the same 
eigenvalues, I guess the same eigenvectors, yeah, if you or, eig(M^-1,K), of course. 
If you want to do it with just one matrix then bring M inverse over here. But and M 
inverse, the inverse of this tridiagonal matrix, is full. No zeroes in the inverse. So 
everybody would much prefer this tridiagonal tridiagonal one. So that's how MATLAB 
would do it. And what I want to know is, back in this problem, how close do the finite 
element guys come, on polygons, come to the correct solution on circles. I'm hoping 
that for problem one you can maybe keep M and N equal, or maybe four times M or 
something. And let them grow and see. Well, for example, at the center of the circle, 
or how quickly do you approach the correct answer one at the center of the circle? I 
think it's going to be a good problem. Let me open to, so I started out just talking 
there. What about the MATLAB problem. You made a start on it, is it going? Have 
you got a graph, maybe, or what's reasonable to graph, to give Peter to look at? 
Who's done something on that MATLAB problem? Yeah, go ahead tell us all what to 
do. 



AUDIENCE: I made the triangle pi section 

PROFESSOR STRANG: OK, right 

AUDIENCE: [INAUDIBLE] and I found that the [INAUDIBLE] changes to M. 

PROFESSOR STRANG: With M more, I see. So if you just fixed M like eight, and let n 
get, it didn't change significantly. It wouldn't, of course, converge to the right 
answer. It'll converge, if it does, to some kind of an answer, for the polygon. Right. 
That's right. So you know, as I wrote the problem I didn't know whether I dared say 
let M get increased too, but of course that's the real question. And what happened 
then? Did error shrink? OK, and now maybe it's possible to see how fast or 
something that's always-

AUDIENCE: [INAUDIBLE] 

PROFESSOR STRANG: Ah. OK, at the center. OK, then I hope for more comment. Let 
me say one more thing. My theory is that the error at the center is quite a bit 
smaller than the error closer to the boundary. I would be interested in an error, is it 
fairly even? Oh, my theory's wrong. It wouldn't be the first time. And maybe because 
it's linear. Yeah, my theory is more for better elements, like these. I'd be interested 
to know. Why do I think, why do I have this theory, which you guys are going to 
prove wrong anyway, but still. After you've proved it wrong, you won't listen to me if 
I tell it to you. So now I'll tell it. My theory is that the error around the boundary is, 
there's no error at these vertices, and then there's sort of a going to be an error 
because the real answer is not zero along here. It's sort of near zero, but not quite. 
You know, there's an error. So there's errors around here, from getting the boundary 
wrong. Squaring it off. But my theory is that errors, the boundary stuff, drops off 
quickly as you go inside. That's why I think, from those, you remember those - well, 
we'll see them again either today or Friday, those r^n*cos(nx) type things? That 
cos(n*theta)? Yeah, you remember those are the typical solutions to Laplace's 
equation. And then so that if, and it has some coefficient, of course, a n. And I look 
at that, that might be a piece of error. And it's way bigger when r is one and way 
smaller when r is zero. So anyway, that's sort of my theory. That if you have, like 
physically. You have a circular plate and you're maintaining the boundary 
temperature at some sort of oscillation. Like, near one but up and down from one. 
Then I think further inside, it doesn't know. It hardly knows about that oscillation. 
This is my theory. That toward the center of the circle it only sees kind of an average 
boundary temperature and not your little ups and downs. So when M is big, I expect 
that part of the up and down part to be not so significant in the center. Anyway, now 
that's my theory. 

AUDIENCE: [INAUDIBLE] 

PROFESSOR STRANG: Ah, good question. So if we only looked at the center, would it 
all be the same? I mean, if we're only looking at that one point where it should be 1 
at the center, but along the thing, I don't know. If you look at both, and see a 
significant difference in the behavior I'd be interested. Yeah, yeah. You know, all 
these problems are things that there's no single solution to. 

AUDIENCE: [INAUDIBLE] 

PROFESSOR STRANG: The error between one minus r squared 



AUDIENCE: [INAUDIBLE] 

PROFESSOR STRANG: Oh, right, we've got slope error, too. That's a very significant 
point. I see, right. So the slope error's in there. Everybody knows, then, everybody 
in working the problem, I mentioned that the boundary conditions in this piece of pie 
were zero along here and normal derivative, somehow it got printed du/dh, but that 
was an accident. It should've been du/dn, dn is zero. So Neumann conditions on this 
thing and then I was a little scared about that point, but I think phooey on it. It's 
just, don't worry about it. But what I was going to say. How do you, what do you do 
to take into account this du/dn=0? This slope condition on these long boundaries? 
What should you do in finite elements to take account for that? And the answer is, in 
one nice word? Nothing. Right, nothing. Your finite element method should not, you 
don't impose any condition along these boundaries. Just use the code as it is with 
zeroes on this boundary. And it should work, yeah. It should work. Any comments on 
other people. Did you get reasonable results, or? Tell me something. Because you 
guys looked at those graphs and I have not. Any feedback yet? On those? I'm happy 
to get email, too, about. So all the email, first of all they've corrected the typos in 
the original coordinate positions. And now they've pointed out I'd better look at M is 
very, very welcome. It doesn't mean that everybody has to do this, if you've 
completed that MATLAB assignment, you never want to see it again, and you've kept 
M=8, it's ok. But if you're interested to see what happens if M goes to 16 or 32, I'm 
interested also. Right, yeah. OK, so anyway that's the problem we're really thinking 
about. And that's the problem that is equally important, but it seemed reasonable 
just to do one of the two. And we were set up to do, we have the code for the 
stiffness matrix, we would need a new code to do these integrals. 

Because this will be linear times linear, right? I'll have to compute that one times this 
one and I would need new formulas that are not there. I'd need formulas for, this 
will be linear times linear so I'll be integrating x squared type stuff. And xy's, 
because I'm 2-D, and y squareds. So it would take a little more code, but not much. 
I think the math, oh here's a question for you. Here's a question for you. Suppose I 
have my trial functions, phi_i(x). What do they add up to? Let me again draw a 
mesh, so I've got a mesh. These are you know, I'm sorry, I want to put in some 
more triangles here. Lots of triangles, whatever. Let me get some more vertices, too. 
I'm getting in trouble. OK, whatever. So phi_i, is the piecewise linear guy that is one 
at node i. So I've got all these different nodes. I need a node there, so I've got one, 
two, three, there's a node, there's more nodes. If I add them all up, this is just like 
in an insights question. I've got all these, you could add up these hats in 1-D. What's 
the sum of the hats in one dimension? One. Good. The sum is one. It's a nice fact 
that these guys add up to one. And now why is it still true here in 2-D, that these 
little pyramids will add to one? That's an inside question, but it's worth thinking 
about. Why do those pyramids add to one? Let me leave that question. I'm thinking 
about, we haven't imposed any boundary conditions yet. We've got them all. and I 
claim that if we add up all the pyramids including the boundary chopped off pyramids 
from the boundary, that we'll get one throughout the whole, now it'll be phi(x,y). 
Because now I'm moving to 2-D, with pyramids. I think we'll still have one. Let me 
give you a minute to think about that one. And then we could turn to Fourier 
questions if you would like, we could do some problems from the text. 

Any thoughts about this guy? Why should all those individual pyramids add up to a 
flat group? Why did it work here? Well, it worked because you could see it, right, 
somehow? Does it still work if the nodes are not equally spaced? So we've got a hat 



function for that guy, and a hat function for this guy, and a hat function for this guy. 
And these guys are in there, too. We haven't imposed anything. So those one, two, 
three, four, five functions, five phis, they add up to one and y. Well, you're going to 
say it's obvious, but that's what professors are allowed to say. Things are obvious, 
you have to actually say why. Which is not as easy. So, why do they add to one? Let 
me look inside one element. Why does the sum of these two guys add to a flat top 
inside that interval? 

AUDIENCE: [INAUDIBLE] 

PROFESSOR STRANG: At the end points, you've got it. Because what's happening at 
the end points? This guy, one of the guys, the right guy is one. And all other guys 
are zero, right. And this guy is also at one. Because it's the right guy. It has height 
one and all others zero. So at the nodes we are at one, because of one person, 
really, one element. And then? 

AUDIENCE: [INAUDIBLE] 

PROFESSOR STRANG: Right. But the sum of them is, why is the sum of them always 
one, why is slope zero? Yeah. The slopes cancel, right. We know that in between it 
will be a linear function. That would be one way to look at it. If I add up a linear 
function and a linear function the sum is a linear function. So I'm getting a linear 
function, which is one at those points, so what is that function? One. Right, you know 
that's the straight line. So, that idea will work here too. Look inside some little 
triangle here. OK, that's got one, two, three corners, OK. And if I look at this sum, 
what is it at this point? If I look at that sum at this corner, one guy is one, the one 
for that pyramid. And all others are? Zero. So the sum is one there, the sum is one 
there, the sum is one there, so that blowing up this little triangle, this is at height 
one, this is at height one, this is at height one, so what's the roof? Flat. It's just a 
nice way to see the nice property of these phis. That there's a phi for every node, 
and they add to one. To that's it. OK, well I was going to say one more thing and I 
am, about this eigenvalue problem, just because I'll never have a chance again. So 
this is the moment to say something about the eigenvalues. Lambda. Eigenvalue. 
I'm answering the question where does K come from, where does M come from? 
Well, eigenvalue is, boy we really got dramatic music here. That's a great Gates of 
Kiev, I think might be. Mussorgski. If you like drums and big noise, it's not music 
actually, but you got a lot of noise out of it. Well, of course, he'd know more than we 
do, but still. 

OK, so the eigenvalues in the matrix case for Kx=lambda*M*x, the eigenvalue 
problem, lambda, the lowest eigenvalue, lambda lowest, has a nice property. It's the 
minimum of sort of our energy over our other energy. I just think, well this is 
something you should see. This is a quotient here. It's got a name called the 
Rayleigh quotient. And it would appear in the book. So really, I guess what I'm doing 
is calling your attention to something that's in the book. That this a ratio of x 
transpose K x to x transpose M x, if I look over all vectors x, the lowest one is the 
eigenvector. The best x is the eigenvector and the ratio is the eigenvalue. This is like 
my point that I wanted to mention the Rayleigh quotient. Here it is in the matrix 
case, and there would be similar Rayleigh quotient in the continuous case. I'll just 
leave it at that. That in describing eigenvalues, we can talk about Kx=lambda*M*x, 
like this. Or we can get energy into it. And you remember the whole point about 
finite elements is, look at the energy. Look at that the quadratics. Multiply things by 
things. It came from the weak form, it didn't come from the strong form. In the 



differential equation here, we just have single terms. We got to these things through 
that process of multiplying by u's and integrating. That's what gave us these 
products and it works also in the matrix case. OK, that was a lot of speechmaking 
about topics that we simply didn't have time for in class. I'm ready for any question, 
or I'm ready to maybe do a Fourier example, would you like that? Because this is 
where we really are. I'll even take one that will be on the homework. Just so you'll 
have a start. 

OK, let me take a square pulse, yeah this is a good one, I think. In Section 4.1, 
there's a question for the Fourier series of a square pulse. OK, so what does the 
square pulse look like? Here's minus pi to pi. Here's zero. The square pulse goes 
along here, up square pulse and down. Actually, let me go to L/2, oh I'll just call it h. 
Let me find the Fourier series for this function. It goes along at 0, it jumps up to 1 
over a interval of length 2 h, going from minus h to h, and then back down to and 
then repeat. So bip bip bip, square pulse. So that's my function. Is that function odd, 
or even, or neither one? It's even, so I can call that C(x). And figure that I'm going 
to use cosines for that one, right? So tell me a formula for the coefficients, what's 
the integral that I have to do? So my C(x) o is going to be some a_0, we have to 
think what's a_0, then a_1*cos(x), a_2*cos, and so on. So on. a_k*cos(kx). OK, 
what's the formula for a_k? Before I plug in that function I would like to get the 
formula. So I'm looking for the formula. It's a formula to remember. So I'm not 
wasting your time. Because you're going to see it on the board and it'll just take a 
mental photograph of it. What do you think it's going to be? How am I going to get 
it? I'll multiply both sides of the equation by cos(kx), right? And I'll integrate. So and 
then when I integrate, the cosines are orthogonal. Just like the sines this morning. 
All those terms will go, except for this term. When I multiply this by cos(kx), I'll have 
cos(kx) squared. Here I'll have a cos(kx), and here I'll have a whole lot of cos(kx)'s 
but when I integrate, all this stuff is going to disappear. And this will all disappear. 

This is it. So a_k is going to be the integral of my function, times cos(kx)dx. Divided 
by what? Divided by the integral of cos(kx) squared. Because I haven't normalized 
things. So I don't know that that's one, and in fact it isn't one. So I have to 
remember to put that number in. OK, so that's the formula and that number turns 
out to be pi, again. If I'm integrating from minus pi to pi, then the average value of 
the cosine squared is a 1/2, it's sort of as much above 1/2 as it is below 1/2, and so 
the average of the half, the interval is 2pi, so pi. OK, that's the formula. Please just 
take a mental photograph. Catch that one. Alright, now I've got my particular C(x), 
my square wave, square pulse. Very, very important. Very important Fourier series 
here. Famous one. OK, so what do I have? From minus pi to pi, so what's my 
integral? Well, my integral really doesn't go from minus pi to pi because my function 
is mostly zero. Where does my integral go? Negative h to h, right? And in that 
region, what is C(x)? One. So you see it's going to be nice. From negative h to h, 
where this is one, I just have to integrate cos(kx), so what do I get? sin(kx), over k, 
and the pi so you see again that that k is showing up in the denominator, and that's 
going to give me the typical decay rate of 1/k for functions with steps. For step 
functions. And now I have to evaluate this between minus pi and pi. And no, h. 
Better be h. I mean, minus h and h. So what do I get for that? I get sine(kh), right? 
At the top, and what do I get at minus? So I now I want to subtract, what is the sin(
kh)? It's a negative, right? So as I expect with an even function like cosine, am I just 
getting twice? I could take it from to h, and it would give me one of them and the 
other one. Yep, I think so, and divide by k pi. So those are the Fourier coefficients. 
Except for a_0. a_0 has a slightly different formula, because for a_0, why is a_0 



different? How do you come up with a_0, and what's its meaning? a_0 has a nice 
meeting, so this is worth having come this afternoon for. 

a_0 will be what? Well, I could get it the same way. What will I multiply both sides 
by? If I want to pick off a_0? Just one. It's not a cosine, it's the cos(0x), it's the one. 
And then I integrate. I'm just going to get the integral from minus pi to pi of C(x) 
times one, divided by the integral from minus pi of one times one. Same method. 
multiply both sides by one, which was the very first of my orthogonal functions. 
Integrate it, all the other integrals went away, right? The integral of cosine over a 
whole interval. Its periodic. You get the same at the two ends, so the difference is 
zero. So we just, the only term left was a constant. And now what is the integral, 
row what's the denominator now? That was the little, slight twist. 2pi. The 
denominator's 2pi. Yeah. That's that's why it's not, yeah, it's slightly irregular, I have 
to divide by 2pi. And now, what word would you use to describe, if I have a function, 
and integrate it, and I divide by the length, what am I getting? There's an English 
word that would describe what this is. Average. This is the average. And it has to be. 
This constant term is always the average. And what will it be for this? So this was 
a_k, and what is a_0, then? So you can now tell me, so everybody's remembering 
this formula, you integrate the function and divide by the 2pi. Now we've got a 
particular function, so what is the integral of that function? So what does this equal? 
For this particular C(x)? What's the area under that function C(x)? 2h. Right? So 
2h/2pi cancel twos. So there's a constant term, a_0 is h/pi and the and the cosine 
terms are, yeah, actually we're going to get something nice. A really nice way to 
complete this will be if I put this together, put this series together. So now I'm 
saying that this square pulse is that constant term h/pi plus the next term a_1, you 
can see all these terms have 2/pi's. 

I'm a little surprised that h over, yeah, I guess it's right. 2/pi. So I've got sin(h), I 
think. And now I'm just copying this. 2/pi*sin(h), sin(h), is that what I want? Over 
one. That's the coefficient version of sine, of cos(x). a_1 was the coefficient of 
cos(1x). And then a_2 is the coefficient of cos(2x). So that will be sin(2h). k is two, 
so I have a two down here, cos(2x). And so on. Yeah, I think that's the Fourier 
series. That would be the Fourier series for the square pulse. Yeah. That would be 
the Fourier series for the square pulse. Could I test any interesting cases? Suppose h 
is all the way out to pi. Suppose I take that case. Let h go all the way out to pi, then 
what's my function? If h=pi, then what have I got a graph of? Just one. It's just a 
one. If h is pi, what happens? That becomes a one, and what about these other 
things? What is this thing when h is pi? Zero. All the other terms go away. It's just a 
sin(2pi) that would go away. Yeah, so if h is pi, if I go out to the place where I don't 
have any jumps at all because it's now all the way out there, then these terms all 
disappear and I just have this. 

And I would like to ask you and it's going to come up on Friday, too, what happens if 
h goes to zero? Well, let me just take h going to zero. What happens to this whole 
thing? What happens to my function if h goes to zero? Goes to zero, right, then 
squeezed it to nothing. And if h is zero then sin(h) is zero, I get 0=0, that's not 
interesting enough to mention on Friday But there is one case that is important. 
Suppose I make the height, yeah. Make a guess. Suppose I make the height higher 
as I make the base smaller. I'm going to keep the area as one, so if this has a base 
of 2h, I'm going to have a height of 1/2h. So if I keep the area at one, so the height 
now is 1/2h, so now my square pulse I've divided it by 2h. I have a 1/2h multiplying 
everything. And now if I let h go to zero, something more interesting will happen. 
And what? Just tell me first, what would you expect to happen? Delta. Right, delta. 



So what I'll see show up will be the Fourier series for the delta function. When I 
divide by 2h, so I have sin(h)'s over h's, and of course what's the great fact about 
sin(h)/h? As h goes to zero, it goes to, everybody know, that's the big deal. Yeah. 
One. sin(h) is the same size as h for a very small h, and approaches one. Yeah so 
we'll see the delta function Friday. OK, so you've got a sort of mini-lecture instead of 
a real chance to ask about homework. Next Wednesday should be different because 
there will be Fourier series homework, and I'll be ready to answer questions about it. 
OK, thanks. 


