MIT OpenCourseWare http://ocw.mit.edu

18.034 Honors Differential Equations Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Solutions to Problemset 4

Spring 2009

- 1. (a) $u' = u'_1 v + u_1 v'$, $u'' = u''_1 v + 2u'_1 v' + u_1 v''$, $u''' = u'''_1 v + 3u''_1 v' + 3u'_1 v'' + u_1 v'''$.
 - (b) The equation for v' reduces to (2-x)v''' + (3-x)v'' = 0, so that $v = -c_1xe^{-x} + c_2x + c_3$. Hence, $u = c_1x + c_2xe^x + c_3e^x$.
- 2. (a) $\{x^{\alpha}, x^{\beta}\}$ is a basis of solution of the homogeneous equation.

$$u(x) = \frac{1}{\alpha - \beta} \left(x^{\alpha} \int f(x) x^{1-\alpha} dx - x^{\beta} \int f(x) x^{1-\beta} dx \right)$$

(b) $\{x^{\alpha}, x^{\alpha} \log x\}$ is a basis of the homogenous equation.

$$u(x) = x^{\alpha} \log x \int f(x) x^{1-\alpha} dx - x^{\alpha} \int f(x) x^{1-\alpha} \log x dx$$

- 3. $\{\cos kx, \sin kx\}$ is a basis of the homogenous equation. $W(\cos kx, \sin kx) = k$. So the Green's function is $G(x,t) = \frac{1}{k}(\cos kx \sin kt \cos kt \sin kx) = \frac{1}{k}\sin k(x-t)$.
- 4. (a) $(D-\alpha)^{m+1}$, $(D^2+\beta^2)^{m+1}$, $D^2-2\alpha D+(\alpha^2+\beta^2)$, respectively.
 - (b) $\{\cos x, \sin x, e^{3x}, xe^{3x}\}$ is a basis of solutions of the homogenous equation. An annihilator for $e^{3x}(10x+1)$ is $(D-3)^2$. So, design a particular solution as

$$c_1 \cos x + c_2 \sin x + (c_3 + c_4 x + c_5 x^2 + c_6 x^3)e^{3x}$$

A straightforward calculation shows that $u_p(x) = x^2(2x-3)e^{3x}$. Hence, the general solution is

$$u = c_1 \cos x + c_2 \sin x + c_3 e^{3x} + c_4 x e^{3x} + x^2 (2x - 3)e^{3x}$$

- 5. (a) $p(\lambda)$ is factorized in the real field into $\lambda + a$ and $\lambda^2 + p\lambda + q$, $(a, p, q \in \mathbb{R})$. Since the equation is asymptotically stable, a, p, q are all positive. This implies that all coefficients of the differential equations are positive.
 - (b) Suppose it is <u>not</u> asymptotically stable. That means $a \ge 0$ is a root of the characteristic polynomial.

$$p(a) = a^n + a_1 a^{n-1} + \ldots + a_n \ge a_n > 0$$

which leads to a contradiction.

- (c) A counterexample is u''' + u'' + u' + u = 0.
- 6. (a) $\frac{|y^2 0|}{|y 0|} = |y| \to \infty$ as $y \to \infty$. So, not Lipshitzian. The solution of $\begin{cases} y' = y^2 \\ y(0) = y_0 > 0 \end{cases}$ is $y = \frac{y_0}{1 ty_0} \to \infty$ as $t \to \frac{1}{y_0}$.
 - (b) $\frac{|y^{2/3}-0|}{|y-0|} = |y^{-1/3}| \to \infty$ as $y \to 0$. So, not Lipschitzian. The initial value problem $\begin{cases} y'=y^{2/3} \\ y(0)=0 \end{cases}$ has two solutions, $y_1(t)=0$ and $y_2(t)=(t/3)^3$.