Problem Set 7

1

1. Consider the following uncertain nonlinear dynamical model of a vehicle:

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ \psi \end{bmatrix}, \qquad \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, \mathbf{w}) = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} -v \sin \psi + w \\ v \cos \psi \\ u \end{bmatrix} \qquad (x_0, y_0, \psi_0) = (0,0,0)$$

- Control inputs *u*, *v*
- Source of Uncertainty: disturbance $\omega \in [-0.1 \ 0.1]$
- Obstacle: $X_{obs} = \{ (x_1, x_2): 0.25^2 x_1^2 (x_2 0.5)^2 \ge 0 \}$

Motion Primitives:

1)
$$\psi_1^* = 0$$
, $v_1 = 1m/s$, $u_1 = -50(\psi - \psi_1^*)$, 2) $\psi_2^* = \frac{15\pi}{180}$, $v_2 = 1.5m/s$, $u_2 = -50(\psi - \psi_2^*)$
3) $\psi_3^* = \frac{45\pi}{180}$, $v_1 = 2m/s$, $u_3 = -50(\psi - \psi_3^*)$ 4) $\psi_4^* = \frac{90\pi}{180}$, $v_4 = 3m/s$, $u_4 = -50(\psi - \psi_4^*)$

$$2) \ \psi_2^* = \frac{15\pi}{180},$$

$$v_2 = 1.5m/s, u_2 = -50(\psi - \psi_2^*)$$

3)
$$\psi_3^* = \frac{45\pi}{180}$$

$$v_1 = 2m/s$$
, $u_3 = -50(\psi - \psi_3^*)$

$$4) \ \psi_4^* = \frac{90\pi}{180},$$

$$v_4 = 3m/s$$
, $u_4 = -50(\psi - \psi_4^*)$

Check the safety of the given motion primitives.

Hint: Similar example on the page 33 of Lecture 8.

2. Consider the following uncertain nonlinear dynamical system

$$x_1(k+1) = x_2(k)$$

$$x_2(k+1) = x_1(k)x_2(k) + u(k) + (0.2\omega(k) - 0.1)$$

- Source of uncertainties at time k: $(x_1(k), x_2(k), \omega(k)) \in \Omega_x = \{(x_1, x_2, \omega) = 0.1^2 x_1^2 x_2^2 \omega^2 \ge 0\}.$
- Goal Set: Neighborhood of the way-point (0,0.5), i.e. a ball around the way-point

$$X_{safe} = \{ (x_1, x_2): 0.2^2 - (x_1 - 0)^2 - (x_2 - 0.5)^2 \ge 0 \}$$

Robust set for control input at time k :

$$U_R = \{u(k) : x(k+1) \in X_{safe}, \forall \omega \in \Omega_x\}$$

- i) Find the inner approximation of the robust set of control input U_R using the SOS program with relaxation order d=4.
- ii) Obtain the Robust Set using Monte-Carlo Approach.

Hint: Similar example on the page 64 of Lecture 8.

3. Consider the following uncertain nonlinear dynamical system

$$x_1(k+1) = x_2(k)$$

$$x_2(k+1) = x_1(k)x_2(k) + u(k) + (0.2\omega(k) - 0.1)$$

- Source of uncertainties at time k: $(x_1(k), x_2(k)) \sim U([-0.1, 0.1]^2)$ $\omega_k \sim N(m, \sigma), m \in [-0.1, 0.1], \sigma \in [0.1, 0.3]$
- Unsafe set: $X_{obs} = \{ (x_1, x_2): 0.3^2 (x_1 0.2)^2 (x_2 0.3)^2 \ge 0 \}$
- Distributionally Robust Chance constrained set for control input at time *k*:

$$U_{DR} = \{u(k) : \operatorname{Prob}(x(k+1) \in X_{safe}) \ge 1 - \Delta, \ \forall N(m, \sigma)\}$$
 $\Delta = 0.2$

- i) Find the inner approximation of the set U_{DR} using the SOS program with relaxation order d=6.
- ii) Choose a control input $u_k \in U_{DR}$. Using the Monte-Carlo approach show that for the chosen controller the following result holds true: $Prob(x(k+1) \in X_{safe}) \ge 1 \Delta$

Hint: Similar example on the page 121 of Lecture 8.

MIT OpenCourseWare https://ocw.mit.edu/

16.S498 Risk Aware and Robust Nonlinear Planning Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.