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Probabilistic Dynamical Systems and Probabilistic Safety Constraints 

Discrete-Time Model 

𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘) 

states inputs Uncertainty ~ pr(𝜔𝜔𝑘𝑘):probability distribution 

 For safety and control, we need to work with probability 
distribution s of the uncertainty along the planning horizon. 

𝑥𝑥𝑘𝑘 ~𝑝𝑝𝑝𝑝 𝑥𝑥𝑘𝑘 𝑘𝑘 = 0, … , 𝑁𝑁 

𝑥𝑥𝑘𝑘~pr(𝑥𝑥𝑘𝑘) 

𝑥𝑥0~pr(𝑥𝑥0) 

𝑥𝑥𝑁𝑁~pr(𝑥𝑥𝑁𝑁) 
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Probabilistic Dynamical Systems and Probabilistic Safety Constraints 

Continuous-Time Model 

Ordinary Differential Equation (ODE) 

�̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥(𝑡𝑡), 𝑢𝑢(𝑡𝑡)) 𝑥𝑥0~𝑝𝑝𝑝𝑝 𝑥𝑥0 

 Due to probabilistic initial states, state of the system at each time 𝑡𝑡 are also 
probabilistic. 

 The initial measure is transported by the flow of the ODE. 

𝑥𝑥𝑡𝑡~𝑝𝑝𝑝𝑝 𝑥𝑥𝑡𝑡 𝑡𝑡 ∈ [0, 𝑇𝑇] 
𝑥𝑥𝑡𝑡~pr(𝑥𝑥𝑡𝑡) 

𝑥𝑥0~pr(𝑥𝑥0) 

𝑥𝑥𝑇𝑇 ~pr(𝑥𝑥𝑇𝑇) 

𝑡𝑡 ∈ [0, 𝑇𝑇] 
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Probabilistic Dynamical Systems and Probabilistic Safety Constraints 

Continuous-Time Model 

Ordinary Differential Equation (ODE) 

�̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥(𝑡𝑡), 𝑢𝑢(𝑡𝑡)) 𝑥𝑥0~𝑝𝑝𝑝𝑝 𝑥𝑥0 

 Due to probabilistic initial states, state of the system at each time 𝑡𝑡 are also 
probabilistic. 

 The initial measure is transported by the flow of the ODE. 

𝑥𝑥𝑡𝑡~𝑝𝑝𝑝𝑝 𝑥𝑥𝑡𝑡 𝑡𝑡 ∈ [0, 𝑇𝑇] 

 For safety and control, 
• Instead of working  with probability measures 𝑥𝑥𝑡𝑡~𝑝𝑝𝑝𝑝 𝑥𝑥𝑡𝑡 over planning horizon 

𝑡𝑡 ∈ [0, 𝑇𝑇] 
• We work with 3 distributions: 

1) Initial distribution 2) Terminal distribution, 
3) Average Occupation Measure that captures the information of the probabilistic 

trajectories 𝑥𝑥0~pr(𝑥𝑥0) 

𝑥𝑥𝑇𝑇 ~pr(𝑥𝑥𝑇𝑇) 

𝑥𝑥𝑡𝑡~pr(𝑥𝑥𝑡𝑡) 

𝑡𝑡 ∈ [0, 𝑇𝑇] 
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• We work with 3 distributions (measures): 
1) Initial distribution 
2) Terminal distributions, 
3) Average Occupation Measure that captures the information of the probabilistic trajectories 

 (Average )occupation measure captures the information of dynamical systems in continuous-time. 

 These measures satisfy Linear Partial Differential Equation (PDE). 

• Instead of working with Nonlinear Ordinary Differential Equation (ODE) 

𝜇𝜇0 

𝜇𝜇𝑇𝑇

𝜇𝜇

)) �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥(𝑡𝑡), 𝑢𝑢(𝑡𝑡
We work with Linear PDE in terms of measures. 
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 We can formulate control and planning problems of continuous-time dynamical systems as 
optimization problems with differential constraints. 

Example: Optimal Control 

• Using notion of (average )occupation Measure, we can reformulate such optimizations in terms of 
measures (Linear Program) and their moments (Semidefinite Program). 
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Topics: 

 Occupation Measure and Liouville’s Equation 

 Trajectory Optimization 

 Optimal Control 

 Region of Attraction Set 

 Nonlinear Feedback Control and Backward Reachable Set 
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(Average )Occupation Measure 
and 

Liouville’s Equation 

D. Henrion, M. Ganet-Schoeller, S. Bennani. ”Measures and LMI for space launcher robust control validation”, Proceedings of the IFAC Symposium on Robust 
Control Design, Aalborg, Denmark, June 2012. 

D. Henrion ”Optimization on linear matrix inequalities for polynomial systems control”, Lecture notes used for a tutorial course given during the 
International Summer School of Automatic Control held at Grenoble, France, in September 2014. 
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Notations 

Measure (Lecture 3: measure and moment based nonlinear optimization) 

(Nonnegative) measure 

 In general (nonnegative) measure      assigns real numbers to sets.(measures the size of the set) 

density function of 𝜇𝜇 Set in 𝑥𝑥 domain To emphasize that measure 
is defined in 𝑥𝑥 domain 

e.g., 𝑥𝑥~𝜇𝜇 𝑑𝑑𝑥𝑥 

Indicator function of set A 

Probability measure of random variable in 𝑥𝑥 domain 

𝜇𝜇 𝐴𝐴 : probability that random variable is in set 𝐴𝐴 

 moment of order 𝛼𝛼 of a measure 
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ODE: �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial states are random variable 𝑥𝑥0~𝜉𝜉0(𝑑𝑑𝑥𝑥) (Probability measures) 

• Due to random initial states, ODE has a family of trajectories. 𝑥𝑥𝑡𝑡~𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡) (probability measure of states for given 𝑡𝑡 ) 

• Terminal states are random variable 𝑥𝑥𝑇𝑇 ~𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) (Probability measures) 
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𝜉𝜉0(𝑑𝑑𝑥𝑥) 

𝜉𝜉𝑇𝑇(𝑑𝑑𝑥𝑥) 

𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡) 



                                                                        

   

     

  

   

ODE: �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial states are random variable 𝑥𝑥0~𝜉𝜉0(𝑑𝑑𝑥𝑥) (Probability measures) 

• Due to random initial states, ODE has a family of trajectories. 𝑥𝑥𝑡𝑡~𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡) (probability measure of states for given 𝑡𝑡 ) 

• Terminal states are random variable 𝑥𝑥𝑇𝑇 ~𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) (Probability measures) 

Probability measures of states 𝜉𝜉0 𝑑𝑑𝑥𝑥 , 𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡),𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) 𝑡𝑡 ∈ [0, 𝑇𝑇] 
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𝜉𝜉0(𝑑𝑑𝑥𝑥) 

𝜉𝜉𝑇𝑇(𝑑𝑑𝑥𝑥) 

𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡) 



                                                                        

   

     

   

     

  

   

ODE: �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial states are random variable 𝑥𝑥0~𝜉𝜉0(𝑑𝑑𝑥𝑥) (Probability measures) 

• Due to random initial states, ODE has a family of trajectories. 𝑥𝑥𝑡𝑡~𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡) (probability measure of states for given 𝑡𝑡 ) 

• Terminal states are random variable 𝑥𝑥𝑇𝑇 ~𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) (Probability measures) 

Probability measures of states 𝜉𝜉0 𝑑𝑑𝑥𝑥 , 𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡),𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) 𝑡𝑡 ∈ [0, 𝑇𝑇] 

 We add time to the description of probability measures 

 We define measures whose marginal distributions are defined in 1) state space and 2) time domain 
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ODE: �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial states are random variable 𝑥𝑥0~𝜉𝜉0(𝑑𝑑𝑥𝑥) (Probability measures) 

• Due to random initial states, ODE has a family of trajectories. 𝑥𝑥𝑡𝑡~𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡) (probability measure of states for given 𝑡𝑡 ) 

• Terminal states are random variable 𝑥𝑥𝑇𝑇 ~𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) (Probability measures) 

Probability measures of states 𝜉𝜉0 𝑑𝑑𝑥𝑥 , 𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡),𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) Measures defined in state space 

 We add time to the description of probability measures 

 We define measures whose marginal distributions are defined in 1) state space and 2) time domain 

e.g., 𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝜇𝜇(𝑑𝑑𝑡𝑡) 𝜇𝜇(𝑑𝑑𝑥𝑥) 

Marginal measure in time 
Marginal measure in states 

Measure  defined in time and state spaces 
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ODE: �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial states are random variable 𝑥𝑥0~𝜉𝜉0(𝑑𝑑𝑥𝑥) (Probability measures) 

• Due to random initial states, ODE has a family of trajectories. 𝑥𝑥𝑡𝑡~𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡) (probability measure of states for given 𝑡𝑡 ) 

• Terminal states are random variable 𝑥𝑥𝑇𝑇 ~𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) (Probability measures) 

Probability measures of states 𝜉𝜉0 𝑑𝑑𝑥𝑥 , 𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡),𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) 

 We add time to the description of probability measures 

Marginal measure Marginal measure 
in time in states 

Initial Measure 𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝜉𝜉0(𝑑𝑑𝑥𝑥)
𝛿𝛿0(𝑑𝑑𝑡𝑡) 

Delta distribution of time t=0 𝑡𝑡 𝑡𝑡 = 0 Probability measure of states 
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Probability measure of states 

ODE: �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial states are random variable 𝑥𝑥0~𝜉𝜉0(𝑑𝑑𝑥𝑥) (Probability measures) 

• Due to random initial states, ODE has a family of trajectories. 𝑥𝑥𝑡𝑡~𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡) (probability measure of states for given 𝑡𝑡 ) 

• Terminal states are random variable 𝑥𝑥𝑇𝑇 ~𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) (Probability measures) 

Probability measures of states 𝜉𝜉0 𝑑𝑑𝑥𝑥 , 𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡),𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) 

 We add time to the description of probability measures Terminal Measure 𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿𝑇𝑇 (𝑑𝑑𝑡𝑡)𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥)
𝛿𝛿𝑇𝑇(𝑑𝑑𝑡𝑡) 

𝑡𝑡 Delta distribution of time 𝑡𝑡 = 𝑇𝑇 
𝑡𝑡 = 𝑇𝑇 

Marginal measure Marginal measure 
in time in states 

Initial Measure 𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝜉𝜉0(𝑑𝑑𝑥𝑥)
𝛿𝛿0(𝑑𝑑𝑡𝑡) 

Delta distribution of time t=0 𝑡𝑡 𝑡𝑡 = 0 Probability measure of states 
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ODE: �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial states are random variable 𝑥𝑥0~𝜉𝜉0(𝑑𝑑𝑥𝑥) (Probability measures) 

• Due to random initial states, ODE has a family of trajectories. 𝑥𝑥𝑡𝑡~𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡) (probability measure of states for given 𝑡𝑡 ) 

• Terminal states are random variable 𝑥𝑥𝑇𝑇 ~𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) (Probability measures) 

Probability measures of states 𝜉𝜉0 𝑑𝑑𝑥𝑥 , 𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡),𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) 

 We add time to the description of probability measures 
Marginal measure 
in time 

(Average) Occupation Measure 𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 1(𝑑𝑑𝑡𝑡)𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡) 

𝑡𝑡 = 𝑇𝑇𝑡𝑡 = 0𝑡𝑡 

1 

Lebesgue Measure of time on [0, 𝑇𝑇] 

probability measure of states for given 𝑡𝑡 
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Example: 

 ODE �̇�𝑥 𝑡𝑡 = −𝑥𝑥(𝑡𝑡) 

• Initial state 𝑥𝑥 0 = 1 

= 𝑒𝑒−𝑡𝑡 • Trajectory 𝑥𝑥 𝑡𝑡 (solution of ODE for the given initial state) 

1• 𝑥𝑥 𝑇𝑇 = 0.693 = 
2 
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Example: 

 ODE �̇�𝑥 𝑡𝑡 = −𝑥𝑥(𝑡𝑡) 

• Marginal measure in states • Marginal measure in time 𝑡𝑡 = 0 
• Probability measure of 𝑥𝑥 = 1 

• Initial state 𝑥𝑥 0 = 1 Initial Measure 𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝛿𝛿1(𝑑𝑑𝑥𝑥) 

= 𝑒𝑒−𝑡𝑡 • Trajectory 𝑥𝑥 𝑡𝑡 

1• 𝑥𝑥 𝑇𝑇 = 0.693 = 
2 Terminal Measure 𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿𝑇𝑇 (𝑑𝑑𝑡𝑡)𝛿𝛿1(𝑑𝑑𝑥𝑥)

2 • Marginal measure in states 
1• Marginal measure in time 𝑡𝑡 = 𝑇𝑇 • Probability measure of 𝑥𝑥 = 
2 

𝑡𝑡 𝑡𝑡 = 0 

𝛿𝛿0(𝑑𝑑𝑡𝑡) 

𝑥𝑥 𝑥𝑥 = 0 

𝛿𝛿0(𝑑𝑑𝑥𝑥) 

𝑡𝑡 𝑡𝑡 = 𝑇𝑇 

𝛿𝛿0(𝑑𝑑𝑡𝑡) 

𝑥𝑥 𝑥𝑥 = 0.5 

𝛿𝛿0(𝑑𝑑𝑥𝑥) 
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Example: 

 ODE �̇�𝑥 𝑡𝑡 = −𝑥𝑥(𝑡𝑡) 

• Marginal measure in states • Marginal measure in time 𝑡𝑡 = 0 
• Probability measure of 𝑥𝑥 = 1 

• Initial state 𝑥𝑥 0 = 1 Initial Measure 𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝛿𝛿1(𝑑𝑑𝑥𝑥) 

• Trajectory 𝑥𝑥 𝑡𝑡 = 𝑒𝑒−𝑡𝑡 

• 𝑥𝑥 𝑇𝑇 = 0.693 = 
1 

2 Terminal Measure 𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿𝑇𝑇 (𝑑𝑑𝑡𝑡)𝛿𝛿1 
2
(𝑑𝑑𝑥𝑥) 

(Average)Occupation Measure 𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 1(𝑑𝑑𝑡𝑡)𝛿𝛿𝑒𝑒−𝑡𝑡 (𝑑𝑑𝑥𝑥) 

• Marginal measure in time 𝑡𝑡 = 𝑇𝑇 • Marginal measure in states 

• Marginal measure in time 𝑡𝑡 ∈ [0, 𝑇𝑇] • Conditional measure in states 

𝑡𝑡 = 𝑇𝑇 𝑡𝑡 = 0𝑡𝑡 

1 Delta distributions along 
the trajectory 𝑥𝑥 = 𝑒𝑒−𝑡𝑡 

• (Average) Occupation Measure captures the information of trajectory 

1• Probability measure of 𝑥𝑥 = 
2 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 19 



                                                                        

   

 

   

     

Example: 

 ODE �̇�𝑥 𝑡𝑡 = −𝑥𝑥(𝑡𝑡) 

• Initial state 𝑥𝑥 0 = 1 • Initial Measure 𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝛿𝛿1(𝑑𝑑𝑥𝑥) 

• Trajectory 𝑥𝑥 𝑡𝑡 = 𝑒𝑒−𝑡𝑡 • (Average) Occupation Measure 𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 1(𝑑𝑑𝑡𝑡)𝛿𝛿𝑒𝑒−𝑡𝑡 (𝑑𝑑𝑥𝑥) 
1• 𝑥𝑥 𝑇𝑇 = 0.693 = • Terminal Measure 𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿𝑇𝑇 (𝑑𝑑𝑡𝑡)𝛿𝛿1(𝑑𝑑𝑥𝑥)2 

2 

 These 3 measure captures the information of dynamical system. 
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Example: 

 ODE �̇�𝑥 𝑡𝑡 = −𝑥𝑥(𝑡𝑡) 

• Initial state 𝑥𝑥 0 = 1 • Initial Measure 𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝛿𝛿1(𝑑𝑑𝑥𝑥) 

• Trajectory 𝑥𝑥 𝑡𝑡 = 𝑒𝑒−𝑡𝑡 • (Average) Occupation Measure 𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 1(𝑑𝑑𝑡𝑡)𝛿𝛿𝑒𝑒−𝑡𝑡 (𝑑𝑑𝑥𝑥) 
1• 𝑥𝑥 𝑇𝑇 = 0.693 = • Terminal Measure 𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿𝑇𝑇 (𝑑𝑑𝑡𝑡)𝛿𝛿1(𝑑𝑑𝑥𝑥)2 

2 

 These 3 measure captures the information of dynamical system. 

 In the case of uncertain states, measure of states are non-delta probability distributions.  
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ODE: �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial states are random variable 𝑥𝑥0~𝜉𝜉0(𝑑𝑑𝑥𝑥) (Probability measures) 

• Due to random initial states, ODE has a family of trajectories. 𝑥𝑥𝑡𝑡~𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡) 

• Terminal states are random variable 𝑥𝑥𝑇𝑇 ~𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) (Probability measures) 

Probability measures of states 𝜉𝜉0 𝑑𝑑𝑥𝑥 , 𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡),𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) 

 Measures in time and state space 
𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 , 𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 , 𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 Measures 

Average Occupation Measure 
𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡)Initial Measure 

𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝜉𝜉0(𝑑𝑑𝑥𝑥) 

Terminal Measure 
𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿𝑇𝑇 (𝑑𝑑𝑡𝑡)𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) These measures satisfy Linear Partial Differential Equation (PDE). 
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ODE: �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 , 𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 , 𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 Measures 

𝜕𝜕𝜇𝜇 Propagation of measures (PDE) + 𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝜇𝜇 = 𝜇𝜇0 − 𝜇𝜇𝑇𝑇 Liouville’s Equation 𝜕𝜕𝑡𝑡 

 These measures satisfy Linear Partial Differential Equation (PDE). 





Average Occupation Measure 
𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡)Initial Measure 

𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝜉𝜉0(𝑑𝑑𝑥𝑥) 

Terminal Measure 
𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿𝑇𝑇 (𝑑𝑑𝑡𝑡)𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) 

Infect, Liouville’s equation captures the information of ODE (dynamical system) 

Hence, instead of working with nonlinear ODE, we can work with linear PDE in measure. 
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ODE: �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 , 𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 , 𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 Measures 

𝜕𝜕𝜇𝜇 Propagation of measures (PDE) + 𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝜇𝜇 = 𝜇𝜇0 − 𝜇𝜇𝑇𝑇 Liouville’s Equation 𝜕𝜕𝑡𝑡 

 These measures satisfy Linear Partial Differential Equation (PDE). 

Average Occupation Measure 
𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡)Initial Measure 

𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝜉𝜉0(𝑑𝑑𝑥𝑥) 

Terminal Measure 
𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿𝑇𝑇 (𝑑𝑑𝑡𝑡)𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) 

 Infect, Liouville’s equation captures the information of ODE (dynamical system) 

 Hence, instead of working with nonlinear ODE, we can work with linear PDE in measure. 

 Give the nonlinear optimization with differential constraints: 

• We replace the differential constraints with linear PDE and reformulated the 
problem terms of measure (Linear Program in measures). 
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ODE: �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 , 𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 , 𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 Measures 

𝜕𝜕𝜇𝜇 Propagation of measures (PDE) + 𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝜇𝜇 = 𝜇𝜇0 − 𝜇𝜇𝑇𝑇 Liouville’s Equation 𝜕𝜕𝑡𝑡 

 These measures satisfy Linear Partial Differential Equation (PDE). 

Average Occupation Measure 
𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡)Initial Measure 

𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝜉𝜉0(𝑑𝑑𝑥𝑥) 

Terminal Measure 
𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿𝑇𝑇 (𝑑𝑑𝑡𝑡)𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) 

 Infect, Liouville’s equation captures the information of ODE (dynamical system) 

 Hence, instead of working with nonlinear ODE, we can work with linear PDE in measure. 

 Give the nonlinear optimization with differential constraints: 

• We replace the differential constraints with linear PDE and reformulated the 
problem terms of measure (Linear Program in measures). 

• We work with the moments of measures (SDP in moments). 
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       In the following, we will look at (average) occupation measure and Liouville’s Equation in more details. 
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Occupation Measure-deterministic case 

• Consider: 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥(𝑡𝑡|𝑥𝑥0): Solution for given initial state 
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Occupation Measure-deterministic case 

• Consider: 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥(𝑡𝑡|𝑥𝑥0): Solution for given initial state 

 Given an initial condition 𝒙𝒙𝟎𝟎, the occupation measure of a trajectory 𝑥𝑥(𝑡𝑡|𝑥𝑥0) is defined by 

occupation measure: 𝜇𝜇( 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 |𝑥𝑥0) = � 𝐈𝐈𝑆𝑆𝑥𝑥 
(𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 given sets 𝑆𝑆𝑡𝑡 ⊂ 0, 𝑇𝑇 , 𝑆𝑆𝑥𝑥 ⊂ Χ 

𝑆𝑆𝑡𝑡 

𝑆𝑆𝑡𝑡 ⊂ 0, 𝑇𝑇 𝑆𝑆𝑥𝑥 ⊂ Χ Indicator function of set 𝑆𝑆𝑥𝑥 

• Occupation measure 𝜇𝜇, measures the size of set 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 with respect to 𝐈𝐈𝑆𝑆𝑥𝑥 
(𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 
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Occupation Measure-deterministic case 

• Consider: 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥(𝑡𝑡|𝑥𝑥0): Solution for given initial state 

 Given an initial condition 𝒙𝒙𝟎𝟎, the occupation measure of a trajectory 𝑥𝑥(𝑡𝑡|𝑥𝑥0) is defined by 

occupation measure: 𝜇𝜇( 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 |𝑥𝑥0) = � 𝐈𝐈𝑆𝑆𝑥𝑥 
(𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 given sets 𝑆𝑆𝑡𝑡 ⊂ 0, 𝑇𝑇 , 𝑆𝑆𝑥𝑥 ⊂ Χ 

𝑆𝑆𝑡𝑡 

𝑆𝑆𝑡𝑡 ⊂ 0, 𝑇𝑇 𝑆𝑆𝑥𝑥 ⊂ Χ Indicator function of set 𝑆𝑆𝑥𝑥 

• Occupation measure 𝜇𝜇, measures the size of set 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 with respect to 𝐈𝐈𝑆𝑆𝑥𝑥 
(𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 

 Geometric interpretation 
Occupation measure, measures the time spent by the graph of the trajectory (t, 𝑥𝑥 𝑡𝑡 𝑥𝑥0 ) in a given set 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥. 
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Example: 

= 𝑥𝑥0𝑒𝑒−𝑡𝑡 ODE �̇�𝑥 𝑡𝑡 = −𝑥𝑥(𝑡𝑡) 𝑥𝑥 𝑡𝑡 
𝑥𝑥 0 = 𝑥𝑥0 ≥ 0 

𝑥𝑥 
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𝑥𝑥 𝑡𝑡 = 𝑥𝑥0𝑒𝑒−𝑡𝑡 

𝑥𝑥0 

𝑡𝑡 



                                                                        

 

        

𝑥𝑥 𝑡𝑡 = 𝑥𝑥0𝑒𝑒−𝑡𝑡 

𝑥𝑥0 

𝑡𝑡 𝑡𝑡 = [0,1] 

Example: 

ODE �̇�𝑥 𝑡𝑡 = −𝑥𝑥(𝑡𝑡) 𝑥𝑥 𝑡𝑡 = 𝑥𝑥0𝑒𝑒−𝑡𝑡 

𝑥𝑥 0 = 𝑥𝑥0 ≥ 0 

occupation measure: 𝜇𝜇( 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 |𝑥𝑥0) = � 𝐈𝐈𝑆𝑆𝑥𝑥 
(𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 

𝑆𝑆𝑡𝑡 

• The time spent by the graph of the trajectory (t, 𝑥𝑥 𝑡𝑡 𝑥𝑥0 ) in a given subset 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 

𝑥𝑥 

𝑎𝑎 ≥ 𝑥𝑥0 

𝜇𝜇( [0,1] × [0, 𝑎𝑎] |𝑥𝑥0) = 1 

𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 

𝑥𝑥 = [0, 𝑎𝑎]
Where 𝑎𝑎 ≥ 𝑥𝑥0 
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𝑥𝑥 𝑡𝑡 = 𝑥𝑥0𝑒𝑒−𝑡𝑡 

𝑥𝑥0 

𝑡𝑡 𝑡𝑡 = [0,1] 

Example: 

ODE �̇�𝑥 𝑡𝑡 = −𝑥𝑥(𝑡𝑡) 𝑥𝑥 𝑡𝑡 = 𝑥𝑥0𝑒𝑒−𝑡𝑡 

𝑥𝑥 0 = 𝑥𝑥0 ≥ 0 

occupation measure: 𝜇𝜇( 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 |𝑥𝑥0) = � 𝐈𝐈𝑆𝑆𝑥𝑥 
(𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 

𝑆𝑆𝑡𝑡 

• The time spent by the graph of the trajectory (t, 𝑥𝑥 𝑡𝑡 𝑥𝑥0 ) in a given subset 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 

𝑥𝑥 

𝜇𝜇( [0,1] × [0, 𝑎𝑎] |𝑥𝑥0) = 0 

𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 

Where 𝑎𝑎 < 𝑥𝑥0𝑒𝑒−1 

𝑎𝑎 < 𝑥𝑥0𝑒𝑒−1 

𝑥𝑥 = [0, 𝑎𝑎] 
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𝑥𝑥 𝑡𝑡 = 𝑥𝑥0𝑒𝑒−𝑡𝑡 

𝑥𝑥0 

𝑥𝑥 

𝑥𝑥 = [0, 𝑎𝑎]𝑎𝑎 ≥ 𝑥𝑥0𝑒𝑒−1 

𝑎𝑎 ≤ 𝑥𝑥0 

                                                                        

 

        

Example: 

ODE �̇�𝑥 𝑡𝑡 = −𝑥𝑥(𝑡𝑡) 𝑥𝑥 𝑡𝑡 = 𝑥𝑥0𝑒𝑒−𝑡𝑡 

𝑥𝑥 0 = 𝑥𝑥0 ≥ 0 

occupation measure: 𝜇𝜇( 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 |𝑥𝑥0) = � 𝐈𝐈𝑆𝑆𝑥𝑥 
(𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 

𝑆𝑆𝑡𝑡 

• The time spent by the graph of the trajectory (t, 𝑥𝑥 𝑡𝑡 𝑥𝑥0 ) in a given subset 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 

𝑥𝑥0𝜇𝜇 0,1 × 0, 𝑎𝑎 𝑥𝑥0 = 1 − 𝑙𝑙𝑙𝑙 
𝑎𝑎 

𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 

Where  𝑥𝑥0𝑒𝑒−1 ≤ 𝑎𝑎 ≤ 𝑥𝑥0 

𝑡𝑡 = [0,1] 𝑡𝑡 
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Example: 

ODE �̇�𝑥 𝑡𝑡 = −𝑥𝑥(𝑡𝑡) 𝑥𝑥 𝑡𝑡 = 𝑥𝑥0𝑒𝑒−𝑡𝑡 

𝑥𝑥 0 = 𝑥𝑥0 ≥ 0 

occupation measure: 𝜇𝜇( 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 |𝑥𝑥0) = � 𝐈𝐈𝑆𝑆𝑥𝑥 
(𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 

𝑆𝑆𝑡𝑡 

• The time spent by the graph of the trajectory (t, 𝑥𝑥 𝑡𝑡 𝑥𝑥0 ) in a given subset 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 

𝑥𝑥 
1 𝑥𝑥0 ≤ 𝑎𝑎 

𝑥𝑥0 𝑎𝑎 ≤ 𝑥𝑥0 ≤ 𝑎𝑎𝑒𝑒 𝜇𝜇 0,1 × 0, 𝑎𝑎 𝑥𝑥0 = � 𝐈𝐈𝑆𝑆𝑥𝑥 
𝑥𝑥 𝑡𝑡 𝑥𝑥0 𝑑𝑑𝑡𝑡 = 1 − 𝑙𝑙𝑙𝑙 

𝑎𝑎 𝑆𝑆𝑡𝑡 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 𝑥𝑥0 > 𝑎𝑎𝑒𝑒 0 

𝑡𝑡 
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Occupation Measure-deterministic case 

• Consider: 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥(𝑡𝑡|𝑥𝑥0): Solution for given initial state 

 Given an initial condition 𝒙𝒙𝟎𝟎, the occupation measure of a trajectory 𝑥𝑥(𝑡𝑡|𝑥𝑥0) is defined by 

occupation measure: 𝜇𝜇( 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 |𝑥𝑥0) = � 𝐈𝐈𝑆𝑆𝑥𝑥 
(𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 given sets 𝑆𝑆𝑡𝑡 ⊂ 0, 𝑇𝑇 , 𝑆𝑆𝑥𝑥 ⊂ Χ 

𝑆𝑆𝑡𝑡 

𝑆𝑆𝑡𝑡 ⊂ 0, 𝑇𝑇 𝑆𝑆𝑥𝑥 ⊂ Χ Indicator function of set 𝑆𝑆𝑥𝑥 

• Occupation measure 𝜇𝜇, measures the size of set 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 with respect to 𝐈𝐈𝑆𝑆𝑥𝑥 
(𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 

 Geometric interpretation: Occupation measure, measures the time spent by the graph of the trajectory (t, 𝑥𝑥 𝑡𝑡 𝑥𝑥0 ) in a given set 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥. 
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Occupation Measure-deterministic case 

• Consider: 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥(𝑡𝑡|𝑥𝑥0): Solution for given initial state 

 Given an initial condition 𝒙𝒙𝟎𝟎, the occupation measure of a trajectory 𝑥𝑥(𝑡𝑡|𝑥𝑥0) is defined by 

occupation measure: 𝜇𝜇( 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 |𝑥𝑥0) = � 𝐈𝐈𝑆𝑆𝑥𝑥 
(𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 given sets 𝑆𝑆𝑡𝑡 ⊂ 0, 𝑇𝑇 , 𝑆𝑆𝑥𝑥 ⊂ Χ 

𝑆𝑆𝑡𝑡 

𝑆𝑆𝑡𝑡 ⊂ 0, 𝑇𝑇 𝑆𝑆𝑥𝑥 ⊂ Χ Indicator function of set 𝑆𝑆𝑥𝑥 

• Occupation measure 𝜇𝜇, measures the size of set 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 with respect to 𝐈𝐈𝑆𝑆𝑥𝑥 
(𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 

 Geometric interpretation: Occupation measure, measures the time spent by the graph of the trajectory (t, 𝑥𝑥 𝑡𝑡 𝑥𝑥0 ) in a given set 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥. 

 Analytic interpretation: Integration with respect to occupation measure 𝜇𝜇 is equivalent to time-integration along a system trajectory, i.e. 

Integral of a function 𝑑𝑑(𝑡𝑡, 𝑥𝑥) along the trajectory:
𝑇𝑇 𝑇𝑇 

� 𝑑𝑑 𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0) 𝑑𝑑𝑡𝑡 = � � 𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡|𝑥𝑥0) Occupation measure 
0 0 𝑋𝑋 
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Occupation Measure-deterministic case 

• Consider: 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥(𝑡𝑡|𝑥𝑥0): Solution for given initial state 

 Given an initial condition 𝒙𝒙𝟎𝟎, the occupation measure of a trajectory 𝑥𝑥(𝑡𝑡|𝑥𝑥0) is defined by 

occupation measure: 𝜇𝜇( 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 |𝑥𝑥0) = � 𝐈𝐈𝑆𝑆𝑥𝑥 
(𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 given sets 𝑆𝑆𝑡𝑡 ⊂ 0, 𝑇𝑇 , 𝑆𝑆𝑥𝑥 ⊂ Χ 

𝑆𝑆𝑡𝑡 

𝑆𝑆𝑡𝑡 ⊂ 0, 𝑇𝑇 𝑆𝑆𝑥𝑥 ⊂ Χ Indicator function of set 𝑆𝑆𝑥𝑥 

• Occupation measure 𝜇𝜇, measures the size of set 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 with respect to 𝐈𝐈𝑆𝑆𝑥𝑥 
(𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 

 Geometric interpretation: Occupation measure, measures the time spent by the graph of the trajectory (t, 𝑥𝑥 𝑡𝑡 𝑥𝑥0 ) in a given set 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥. 

 Analytic interpretation: Integration with respect to occupation measure 𝜇𝜇 is equivalent to time-integration along a system trajectory, i.e. 

Information of the trajectory is captured by occupation measure 
𝑇𝑇 𝑇𝑇 

� 𝑑𝑑 𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0) 𝑑𝑑𝑡𝑡 = � � 𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡|𝑥𝑥0) 
0 0 𝑋𝑋 
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Occupation Measure-deterministic case 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥(𝑡𝑡|𝑥𝑥0): Solution for given initial state 

 Analytic interpretation: Integration with respect to occupation measure 𝜇𝜇 is equivalent to time-integration along a system trajectory, 
i.e. 

𝑇𝑇 𝑇𝑇 

Integral of a function 𝑑𝑑(𝑡𝑡, 𝑥𝑥) along the trajectory: � 𝑑𝑑 𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0) 𝑑𝑑𝑡𝑡 = � � 𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡|𝑥𝑥0) 
0 0 𝑋𝑋 

• Now, we want to describe the time evolution of the function 𝑑𝑑(𝑡𝑡, 𝑥𝑥) along the trajectory of dynamical system. 

• We will use the time-evolution to describe the time-evolution of the moments of measures. 
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Occupation Measure-deterministic case 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥(𝑡𝑡|𝑥𝑥0): Solution for given initial state 

 Analytic interpretation: Integration with respect to occupation measure 𝜇𝜇 is equivalent to time-integration along a system trajectory, 
i.e. 

𝑇𝑇 𝑇𝑇 

Integral of a function 𝑑𝑑(𝑡𝑡, 𝑥𝑥) along the trajectory: � 𝑑𝑑 𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0) 𝑑𝑑𝑡𝑡 = � � 𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡|𝑥𝑥0) 
0 0 𝑋𝑋 

𝑇𝑇 𝑇𝑇 
Solution at time 𝑇𝑇 �̇�𝑥 𝑡𝑡 = 𝑓𝑓(𝑥𝑥 𝑡𝑡 , 𝑡𝑡) 𝑥𝑥 𝑇𝑇 = 𝑥𝑥0 + � 𝑥𝑥 𝑑𝑑𝑡𝑡 = 𝑥𝑥0 + �̇ 𝑓𝑓(𝑥𝑥 𝑡𝑡 , 𝑡𝑡) 𝑑𝑑𝑡𝑡 

0 0 
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Occupation Measure-deterministic case 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥(𝑡𝑡|𝑥𝑥0): Solution for given initial state 

 Analytic interpretation: Integration with respect to occupation measure 𝜇𝜇 is equivalent to time-integration along a system trajectory, 
i.e. 

𝑇𝑇 𝑇𝑇 

Integral of a function 𝑑𝑑(𝑡𝑡, 𝑥𝑥) along the trajectory: � 𝑑𝑑 𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0) 𝑑𝑑𝑡𝑡 = � � 𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡|𝑥𝑥0) 
0 0 𝑋𝑋 

𝑇𝑇 𝑇𝑇 
Solution at time 𝑇𝑇 �̇�𝑥 𝑡𝑡 = 𝑓𝑓(𝑥𝑥 𝑡𝑡 , 𝑡𝑡) 𝑥𝑥 𝑇𝑇 = 𝑥𝑥0 + � 𝑥𝑥 𝑑𝑑𝑡𝑡 = 𝑥𝑥0 + �̇ 𝑓𝑓(𝑥𝑥 𝑡𝑡 , 𝑡𝑡) 𝑑𝑑𝑡𝑡 

0 0 

Given the function 𝑑𝑑 𝑡𝑡, 𝑥𝑥 : 
𝑇𝑇 

𝑑𝑑 𝑇𝑇, 𝑥𝑥(𝑇𝑇|𝑥𝑥0) = 𝑑𝑑 0, 𝑥𝑥0 + � �̇�𝑑 𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0) 𝑑𝑑𝑡𝑡 
0 
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Occupation Measure-deterministic case 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥(𝑡𝑡|𝑥𝑥0): Solution for given initial state 

 Analytic interpretation: Integration with respect to occupation measure 𝜇𝜇 is equivalent to time-integration along a system trajectory, 
i.e. 

𝑇𝑇 𝑇𝑇 

Integral of a function 𝑑𝑑(𝑡𝑡, 𝑥𝑥) along the trajectory: � 𝑑𝑑 𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0) 𝑑𝑑𝑡𝑡 = � � 𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡|𝑥𝑥0) 
0 0 𝑋𝑋 

𝑇𝑇 𝑇𝑇 
Solution at time 𝑇𝑇 �̇�𝑥 𝑡𝑡 = 𝑓𝑓(𝑥𝑥 𝑡𝑡 , 𝑡𝑡) 𝑥𝑥 𝑇𝑇 = 𝑥𝑥0 + � 𝑥𝑥 𝑑𝑑𝑡𝑡 = 𝑥𝑥0 + �̇ 𝑓𝑓(𝑥𝑥 𝑡𝑡 , 𝑡𝑡) 𝑑𝑑𝑡𝑡 

0 0 

Given the function 𝑑𝑑 𝑡𝑡, 𝑥𝑥 : 
𝑇𝑇 

𝑇𝑇 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 𝑛𝑛 𝑑𝑑 𝑇𝑇, 𝑥𝑥(𝑇𝑇|𝑥𝑥0) = 𝑑𝑑 0, 𝑥𝑥0 + � �̇�𝑑 𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0) 𝑑𝑑𝑡𝑡 = 𝑑𝑑 0, 𝑥𝑥0 + ∫0 
+ ∑𝑖𝑖=1 𝑓𝑓𝑖𝑖 𝑑𝑑𝑡𝑡 𝜕𝜕𝑡𝑡 𝜕𝜕𝑥𝑥𝑖𝑖 0 
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Occupation Measure-deterministic case 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥(𝑡𝑡|𝑥𝑥0): Solution for given initial state 

 Analytic interpretation: Integration with respect to occupation measure 𝜇𝜇 is equivalent to time-integration along a system trajectory, 
i.e. 

𝑇𝑇 𝑇𝑇 

Integral of a function 𝑑𝑑(𝑡𝑡, 𝑥𝑥) along the trajectory: � 𝑑𝑑 𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0) 𝑑𝑑𝑡𝑡 = � � 𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡|𝑥𝑥0) 
0 0 𝑋𝑋 

𝑇𝑇 𝑇𝑇 
Solution at time 𝑇𝑇 �̇�𝑥 𝑡𝑡 = 𝑓𝑓(𝑥𝑥 𝑡𝑡 , 𝑡𝑡) 𝑥𝑥 𝑇𝑇 = 𝑥𝑥0 + � 𝑥𝑥 𝑑𝑑𝑡𝑡 = 𝑥𝑥0 + �̇ 𝑓𝑓(𝑥𝑥 𝑡𝑡 , 𝑡𝑡) 𝑑𝑑𝑡𝑡 

0 0 

Given the function 𝑑𝑑 𝑡𝑡, 𝑥𝑥 : 
𝑇𝑇 

𝑇𝑇 𝜕𝜕𝜕𝜕 𝑛𝑛 𝜕𝜕𝜕𝜕 Linear Operator: 𝑑𝑑 𝑇𝑇, 𝑥𝑥(𝑇𝑇|𝑥𝑥0) = 𝑑𝑑 0, 𝑥𝑥0 + � �̇�𝑑 𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0) 𝑑𝑑𝑡𝑡 = 𝑑𝑑 0, 𝑥𝑥0 𝑑𝑑𝑡𝑡 𝑛𝑛 + ∫0 𝜕𝜕𝑡𝑡 
+ ∑𝑖𝑖=1 𝜕𝜕𝑥𝑥𝑖𝑖 

𝑓𝑓𝑖𝑖 
0 𝜕𝜕𝑑𝑑 𝜕𝜕𝑑𝑑 L𝑑𝑑 = + � 𝑓𝑓𝑖𝑖 𝜕𝜕𝑡𝑡 𝜕𝜕𝑥𝑥𝑖𝑖 𝑖𝑖=1 

𝜕𝜕𝑑𝑑 
= + ∇𝑑𝑑 𝑇𝑇𝑓𝑓 
𝜕𝜕𝑡𝑡 
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Occupation Measure-deterministic case 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥(𝑡𝑡|𝑥𝑥0): Solution for given initial state 

 Analytic interpretation: Integration with respect to occupation measure 𝜇𝜇 is equivalent to time-integration along a system trajectory, 
i.e. 

𝑇𝑇 𝑇𝑇 

Integral of a function 𝑑𝑑(𝑡𝑡, 𝑥𝑥) along the trajectory: � 𝑑𝑑 𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0) 𝑑𝑑𝑡𝑡 = � � 𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡|𝑥𝑥0) 
0 0 𝑋𝑋 

𝑇𝑇 𝑇𝑇 
Solution at time 𝑇𝑇 �̇�𝑥 𝑡𝑡 = 𝑓𝑓(𝑥𝑥 𝑡𝑡 , 𝑡𝑡) 𝑥𝑥 𝑇𝑇 = 𝑥𝑥0 + � 𝑥𝑥 𝑑𝑑𝑡𝑡 = 𝑥𝑥0 + �̇ 𝑓𝑓(𝑥𝑥 𝑡𝑡 , 𝑡𝑡) 𝑑𝑑𝑡𝑡 

0 0 

Given the function 𝑑𝑑 𝑡𝑡, 𝑥𝑥 : 
𝑇𝑇 

𝑇𝑇 𝜕𝜕𝜕𝜕 𝑛𝑛 𝜕𝜕𝜕𝜕 Linear Operator: 𝑑𝑑 𝑇𝑇, 𝑥𝑥(𝑇𝑇|𝑥𝑥0) = 𝑑𝑑 0, 𝑥𝑥0 + � �̇�𝑑 𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0) 𝑑𝑑𝑡𝑡 = 𝑑𝑑 0, 𝑥𝑥0 𝑑𝑑𝑡𝑡 𝑛𝑛 + ∫0 𝜕𝜕𝑡𝑡 
+ ∑𝑖𝑖=1 𝜕𝜕𝑥𝑥𝑖𝑖 

𝑓𝑓𝑖𝑖 
0 𝜕𝜕𝑑𝑑 𝜕𝜕𝑑𝑑 L𝑑𝑑 = + � 𝑓𝑓𝑖𝑖 𝜕𝜕𝑡𝑡 𝜕𝜕𝑥𝑥𝑖𝑖 𝑖𝑖=1 𝑇𝑇 =𝑑𝑑 0, 𝑥𝑥0 + ∫0 

L𝑑𝑑(𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 𝜕𝜕𝑑𝑑 
= + ∇𝑑𝑑 𝑇𝑇𝑓𝑓 
𝜕𝜕𝑡𝑡 
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Occupation Measure-deterministic case 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥(𝑡𝑡|𝑥𝑥0): Solution for given initial state 

 Analytic interpretation: Integration with respect to occupation measure 𝜇𝜇 is equivalent to time-integration along a system trajectory, 
i.e. 

𝑇𝑇 𝑇𝑇 

Integral of a function 𝑑𝑑(𝑡𝑡, 𝑥𝑥) along the trajectory: � 𝑑𝑑 𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0) 𝑑𝑑𝑡𝑡 = � � 𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡|𝑥𝑥0) 
0 0 𝜒𝜒 

𝑇𝑇 𝑇𝑇 
Solution at time 𝑇𝑇 �̇�𝑥 𝑡𝑡 = 𝑓𝑓(𝑥𝑥 𝑡𝑡 , 𝑡𝑡) 𝑥𝑥 𝑇𝑇 = 𝑥𝑥0 + � 𝑥𝑥 𝑑𝑑𝑡𝑡 = 𝑥𝑥0 + �̇ 𝑓𝑓(𝑥𝑥 𝑡𝑡 , 𝑡𝑡) 𝑑𝑑𝑡𝑡 

0 0 

Given the function 𝑑𝑑 𝑡𝑡, 𝑥𝑥 : 
𝑇𝑇 

𝑇𝑇 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 Linear Operator: 𝑛𝑛 𝑑𝑑 𝑇𝑇, 𝑥𝑥(𝑇𝑇|𝑥𝑥0) = 𝑑𝑑 0, 𝑥𝑥0 + � �̇�𝑑 𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0) 𝑑𝑑𝑡𝑡 = 𝑑𝑑 0, 𝑥𝑥0 𝑓𝑓𝑖𝑖 𝑑𝑑𝑡𝑡 + ∫0 𝜕𝜕𝑡𝑡 
+ ∑𝑖𝑖=1 𝜕𝜕𝑥𝑥𝑖𝑖 𝑛𝑛 0 𝜕𝜕𝑑𝑑 𝜕𝜕𝑑𝑑 L𝑑𝑑 = + � 𝑓𝑓𝑖𝑖 𝜕𝜕𝑡𝑡 𝜕𝜕𝑥𝑥𝑖𝑖 𝑇𝑇 𝑖𝑖=1 𝑇𝑇 =𝑑𝑑 0, 𝑥𝑥0 + ∫0 

L𝑑𝑑(𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 = 𝑑𝑑 0, 𝑥𝑥0 + � � L𝑑𝑑(𝑡𝑡, 𝑥𝑥)𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡|𝑥𝑥0) 𝜕𝜕𝑑𝑑 
= + ∇𝑑𝑑 𝑇𝑇𝑓𝑓 0 𝑋𝑋 𝜕𝜕𝑡𝑡 

Occupation measure 
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Occupation Measure-deterministic case 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 𝑥𝑥(𝑡𝑡|𝑥𝑥0): Solution for given initial state 

 Analytic interpretation: Integration with respect to occupation measure 𝜇𝜇 is equivalent to time-integration along a system trajectory, 
i.e. 

𝑇𝑇 𝑇𝑇 

Integral of a function 𝑑𝑑(𝑡𝑡, 𝑥𝑥) along the trajectory: � 𝑑𝑑 𝑡𝑡, 𝑥𝑥(𝑡𝑡|𝑥𝑥0) 𝑑𝑑𝑡𝑡 = � � 𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡|𝑥𝑥0) 
0 0 𝜒𝜒 

𝑇𝑇 𝑇𝑇 

𝑥𝑥 𝑇𝑇 = 𝑥𝑥0 + � 𝑥𝑥 𝑑𝑑𝑡𝑡 = 𝑥𝑥0 + �̇ 𝑓𝑓(𝑥𝑥 𝑡𝑡 , 𝑡𝑡) 𝑑𝑑𝑡𝑡 
0 0 
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𝑑𝑑 𝑇𝑇, 𝑥𝑥(𝑇𝑇|𝑥𝑥0) = 𝑑𝑑 0, 𝑥𝑥0 + � 
0 

𝑇𝑇 

� 
𝑋𝑋 
L𝑑𝑑(𝑡𝑡, 𝑥𝑥)𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡|𝑥𝑥0) 

Given the function 𝑑𝑑 𝑡𝑡, 𝑥𝑥 : 

Where L𝑑𝑑 = 
𝜕𝜕𝜕𝜕 

𝜕𝜕𝑡𝑡 
+ ∑𝑖𝑖=1 

𝑛𝑛 𝜕𝜕𝜕𝜕 

𝜕𝜕𝑥𝑥𝑖𝑖 
𝑓𝑓𝑖𝑖 = 

𝜕𝜕𝜕𝜕 

𝜕𝜕𝑡𝑡 
+ ∇𝑑𝑑 𝑇𝑇𝑓𝑓 

Occupation measure 



                                                                        

   

     

Occupation Measure-Probabilistic Case 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial Probability Measure: 𝑥𝑥0 is random variable 𝑥𝑥0~𝜉𝜉0(𝑑𝑑𝑥𝑥) 

• Due to random initial states, ODE has a family of trajectories. 
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Occupation Measure-Probabilistic Case 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial Probability Measure: 𝑥𝑥0 is random variable 𝑥𝑥0~𝜉𝜉0(𝑑𝑑𝑥𝑥) 

• Due to random initial states, ODE has a family of trajectories. 

Initial Probability measures: 𝜉𝜉0(𝑑𝑑𝑥𝑥) 

Terminal Probability measures: 𝜉𝜉𝑇𝑇 𝑆𝑆𝑥𝑥 = �𝐈𝐈𝑆𝑆𝑥𝑥 
𝑥𝑥 𝑇𝑇 𝑥𝑥0 𝜉𝜉0 𝑑𝑑𝑥𝑥 

Probability that states at time 𝑡𝑡 = 𝑇𝑇 are in set 𝑆𝑆𝑥𝑥 ∈ 𝑋𝑋 

𝜉𝜉𝑇𝑇 𝑆𝑆𝑥𝑥 = � (probability distribution) 𝑑𝑑𝑥𝑥 = �𝐈𝐈𝑆𝑆𝑥𝑥 
𝑥𝑥 𝑇𝑇 𝑥𝑥0 (probability distribution) 𝑑𝑑𝑥𝑥 

𝑆𝑆𝑥𝑥 
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Occupation Measure-Probabilistic Case 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial Probability Measure: 𝑥𝑥0 is random variable 𝑥𝑥0~𝜉𝜉0(𝑑𝑑𝑥𝑥) 

• Due to random initial states, ODE has a family of trajectories. 

Initial Probability measures: 𝜉𝜉0(𝑑𝑑𝑥𝑥) 

Terminal Probability measures: 𝜉𝜉𝑇𝑇 𝑆𝑆𝑥𝑥 = �𝐈𝐈𝑆𝑆𝑥𝑥 
𝑥𝑥 𝑇𝑇 𝑥𝑥0 𝜉𝜉0 𝑑𝑑𝑥𝑥 

𝜉𝜉 𝑆𝑆𝑥𝑥|𝑡𝑡 = �𝐈𝐈𝑆𝑆𝑥𝑥 
𝑥𝑥 𝑡𝑡 𝑥𝑥0 𝜉𝜉0 𝑑𝑑𝑥𝑥 Probability measures at time t: 

Probability that states at time 𝑡𝑡 are in set 𝑆𝑆𝑥𝑥 ∈ 𝑋𝑋 
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Occupation Measure-Probabilistic Case 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial Probability Measure: 𝑥𝑥0 is random variable 𝑥𝑥0~𝜉𝜉0(𝑑𝑑𝑥𝑥) 

• Due to random initial states, ODE has a family of trajectories. 

Initial Probability measures: 𝜉𝜉0(𝑑𝑑𝑥𝑥) 

Terminal Probability measures: 𝜉𝜉𝑇𝑇 𝑆𝑆𝑥𝑥 = �𝐈𝐈𝑆𝑆𝑥𝑥 
𝑥𝑥 𝑇𝑇 𝑥𝑥0 𝜉𝜉0 𝑑𝑑𝑥𝑥 

Probability measures at time t: 𝜉𝜉 𝑆𝑆𝑥𝑥|𝑡𝑡 = �𝐈𝐈𝑆𝑆𝑥𝑥 
𝑥𝑥 𝑡𝑡 𝑥𝑥0 𝜉𝜉0 𝑑𝑑𝑥𝑥 (Probability that states at time 𝑡𝑡 are in set 𝑆𝑆𝑥𝑥 ∈ 𝑋𝑋 ) 

Average Occupation Measure: 
Given an initial probability measure of states 𝜉𝜉0, the average occupation measure of the flow of trajectories is defined by 

𝜇𝜇(𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥) = � 𝜇𝜇 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥|𝑥𝑥0 𝜉𝜉0(𝑑𝑑𝑥𝑥) given sets 𝑆𝑆𝑡𝑡 ⊂ 0, 𝑇𝑇 , 𝑆𝑆𝑥𝑥 ⊂ Χ 
𝑋𝑋 

Occupation measure 
(spent time for single 𝑥𝑥 𝑡𝑡 𝑥𝑥0 ) 
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Occupation Measure-Probabilistic Case 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial Probability Measure: 𝑥𝑥0 is random variable 𝑥𝑥0~𝜉𝜉0(𝑑𝑑𝑥𝑥) 

• Due to random initial states, ODE has a family of trajectories. 

Initial Probability measures: 𝜉𝜉0(𝑑𝑑𝑥𝑥) 

Terminal Probability measures: 𝜉𝜉𝑇𝑇 𝑆𝑆𝑥𝑥 = �𝐈𝐈𝑆𝑆𝑥𝑥 
𝑥𝑥 𝑇𝑇 𝑥𝑥0 𝜉𝜉0 𝑑𝑑𝑥𝑥 

Probability measures at time t: 𝜉𝜉 𝑆𝑆𝑥𝑥|𝑡𝑡 = �𝐈𝐈𝑆𝑆𝑥𝑥 
𝑥𝑥 𝑡𝑡 𝑥𝑥0 𝜉𝜉0 𝑑𝑑𝑥𝑥 (Probability that states at time 𝑡𝑡 are in set 𝑆𝑆𝑥𝑥 ∈ 𝑋𝑋 ) 

Average Occupation Measure: 
Given an initial probability measure of states 𝜉𝜉0, the average occupation measure of the flow of trajectories is defined by 

𝜇𝜇 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 = � 𝜇𝜇 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥|𝑥𝑥0 𝜉𝜉0(𝑑𝑑𝑥𝑥) = � � 𝐈𝐈𝑆𝑆𝑥𝑥 
𝑥𝑥 𝑡𝑡 𝑥𝑥0 𝑑𝑑𝑡𝑡𝜉𝜉0(𝑑𝑑𝑥𝑥) = � 𝜉𝜉 𝑆𝑆𝑥𝑥|𝑡𝑡 𝑑𝑑𝑡𝑡 

𝑋𝑋 𝑆𝑆𝑡𝑡 𝑆𝑆𝑡𝑡 
𝑆𝑆𝑡𝑡 ⊂ [0, 𝑇𝑇] probability measure of states at time 𝑡𝑡 Occupation measure 
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Occupation Measure-Probabilistic Case 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial Probability Measure: 𝑥𝑥0 is random variable 𝑥𝑥0~𝜉𝜉0(𝑑𝑑𝑥𝑥) 

• Due to random initial states, ODE has a family of trajectories. 

Initial Probability measures: 𝜉𝜉0(𝑑𝑑𝑥𝑥) 

Terminal Probability measures: 𝜉𝜉𝑇𝑇 𝑆𝑆𝑥𝑥 = �𝐈𝐈𝑆𝑆𝑥𝑥 
𝑥𝑥 𝑇𝑇 𝑥𝑥0 𝜉𝜉0 𝑑𝑑𝑥𝑥 

Probability measures at time t: 𝜉𝜉 𝑆𝑆𝑥𝑥|𝑡𝑡 = �𝐈𝐈𝑆𝑆𝑥𝑥 
𝑥𝑥 𝑡𝑡 𝑥𝑥0 𝜉𝜉0 𝑑𝑑𝑥𝑥 
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Average Occupation Measure: 
Given an initial probability measure of states 𝜉𝜉0, the average occupation measure of the flow of trajectories is defined by 

𝜇𝜇 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 = � 
𝑋𝑋 
𝜇𝜇 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥|𝑥𝑥0 𝜉𝜉0(𝑑𝑑𝑥𝑥) = � � 

𝑆𝑆𝑡𝑡 

𝐈𝐈𝑆𝑆𝑥𝑥 
𝑥𝑥 𝑡𝑡 𝑥𝑥0 𝑑𝑑𝑡𝑡𝜉𝜉0(𝑑𝑑𝑥𝑥) = � 

𝑆𝑆𝑡𝑡 

𝜉𝜉 𝑆𝑆𝑥𝑥|𝑡𝑡 𝑑𝑑𝑡𝑡 

probability measure of states at time 𝑡𝑡 

𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡)Average Occupation Measure probability measure of states for a given t 

𝑆𝑆𝑡𝑡 ⊂ [0, 𝑇𝑇] 



                                                                        

   

 

  

  

 

 

 

Occupation Measure-Probabilistic Case 

ODE �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial Probability Measure: 𝑥𝑥0 is random variable 𝑥𝑥0~𝜉𝜉0(𝑑𝑑𝑥𝑥) 

𝜇𝜇0(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝜉𝜉0(𝑑𝑑𝑥𝑥)• Initial Probability measures of states: 𝜉𝜉0(𝑑𝑑𝑥𝑥) • Initial Measure 

• Terminal Probability measure of states: 𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) • Terminal Measure 𝜇𝜇𝑇𝑇(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) = 𝛿𝛿𝑇𝑇(𝑑𝑑𝑡𝑡)𝜉𝜉𝑇𝑇(𝑑𝑑𝑥𝑥) 

• Probability measure of states for given t: 

Average Occupation Measure 
𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡) 

𝜉𝜉 𝑑𝑑𝑥𝑥|𝑡𝑡 • Average Occupation Measure: 𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡) 
𝑡𝑡 ∈ [0, 𝑇𝑇] 

Terminal Measure 
𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿𝑇𝑇 (𝑑𝑑𝑡𝑡)𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) 

Initial Measure 
𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝜉𝜉0(𝑑𝑑𝑥𝑥) 
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         • Now, we want to describe the time evolution of the function 𝑑𝑑(𝑡𝑡, 𝑥𝑥) in terms of Average occupation measure. 
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• Now, we want to describe the time evolution of the function 𝑑𝑑(𝑡𝑡, 𝑥𝑥) in terms of Average occupation measure. 

𝑇𝑇 

Given 𝑥𝑥0 𝑑𝑑 𝑇𝑇, 𝑥𝑥(𝑇𝑇|𝑥𝑥0) = 𝑑𝑑 0, 𝑥𝑥0 + � � L𝑑𝑑(𝑥𝑥(𝑡𝑡|𝑥𝑥0)) 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡|𝑥𝑥0) 
0 𝑋𝑋 𝑂𝑂𝑂𝑂𝑂𝑂𝑢𝑢𝑝𝑝𝑎𝑎𝑡𝑡𝑑𝑑𝑂𝑂𝑙𝑙 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑢𝑢𝑝𝑝𝑒𝑒 
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• Now, we want to describe the time evolution of the function 𝑑𝑑(𝑡𝑡, 𝑥𝑥) in terms of Average occupation measure. 

𝑇𝑇 

Given 𝑥𝑥0 𝑑𝑑 𝑇𝑇, 𝑥𝑥(𝑇𝑇|𝑥𝑥0) = 𝑑𝑑 0, 𝑥𝑥0 + � � L𝑑𝑑(𝑥𝑥(𝑡𝑡|𝑥𝑥0)) 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡|𝑥𝑥0) 
0 𝑋𝑋 𝑂𝑂𝑂𝑂𝑂𝑂𝑢𝑢𝑝𝑝𝑎𝑎𝑡𝑡𝑑𝑑𝑂𝑂𝑙𝑙 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑢𝑢𝑝𝑝𝑒𝑒 

Integrating with respect to 𝜉𝜉0 

𝑇𝑇 

𝑥𝑥0~𝜉𝜉0 �𝑑𝑑 𝑇𝑇, 𝑥𝑥 𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) = �𝑑𝑑 0, 𝑥𝑥 𝑑𝑑𝜉𝜉0(𝑑𝑑𝑥𝑥) + � � L𝑑𝑑(𝑡𝑡, 𝑥𝑥)𝜇𝜇(𝑥𝑥𝑑𝑑, 𝑑𝑑𝑡𝑡) 
0 𝑋𝑋 𝐴𝐴𝑑𝑑𝑒𝑒𝑝𝑝𝑎𝑎𝐴𝐴𝑒𝑒 𝑂𝑂𝑂𝑂𝑂𝑂𝑢𝑢𝑝𝑝𝑎𝑎𝑡𝑡𝑑𝑑𝑂𝑂𝑙𝑙 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑢𝑢𝑝𝑝𝑒𝑒 Terminal Probability of state Initial Probability of state 
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• Now, we want to describe the time evolution of the function 𝑑𝑑(𝑡𝑡, 𝑥𝑥) in terms of Average occupation measure. 

Given 𝑥𝑥0 𝑑𝑑 𝑇𝑇, 𝑥𝑥(𝑇𝑇|𝑥𝑥0) = 𝑑𝑑 0, 𝑥𝑥0 + � 
0 

𝑇𝑇 

� 
𝑋𝑋 
L𝑑𝑑(𝑥𝑥(𝑡𝑡|𝑥𝑥0)) 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡|𝑥𝑥0)

𝑂𝑂𝑂𝑂𝑂𝑂𝑢𝑢𝑝𝑝𝑎𝑎𝑡𝑡𝑑𝑑𝑂𝑂𝑙𝑙 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑢𝑢𝑝𝑝𝑒𝑒 

�𝑑𝑑 𝑇𝑇, 𝑥𝑥 𝜉𝜉𝑇𝑇(𝑑𝑑𝑥𝑥) = �𝑑𝑑 0, 𝑥𝑥 𝑑𝑑𝜉𝜉0(𝑑𝑑𝑥𝑥) + � 
0 

𝑇𝑇 

� 
𝑋𝑋 
L𝑑𝑑(𝑡𝑡, 𝑥𝑥)𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) 

𝐴𝐴𝑑𝑑𝑒𝑒𝑝𝑝𝑎𝑎𝐴𝐴𝑒𝑒 𝑂𝑂𝑂𝑂𝑂𝑂𝑢𝑢𝑝𝑝𝑎𝑎𝑡𝑡𝑑𝑑𝑂𝑂𝑙𝑙 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑢𝑢𝑝𝑝𝑒𝑒 

𝑥𝑥0~𝜉𝜉0 

Integrating with respect to 𝜉𝜉0 

Terminal Probability of state Initial Probability of state 

�𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝑑𝑑𝜇𝜇𝑇𝑇 = �𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝑑𝑑𝜇𝜇0 + � 
0 

𝑇𝑇 

� 
𝑋𝑋 
L𝑑𝑑(𝑡𝑡, 𝑥𝑥)𝑑𝑑𝜇𝜇(𝑥𝑥, 𝑡𝑡) 

𝐴𝐴𝑑𝑑𝑒𝑒𝑝𝑝𝑎𝑎𝐴𝐴𝑒𝑒 𝑂𝑂𝑂𝑂𝑂𝑂𝑢𝑢𝑝𝑝𝑎𝑎𝑡𝑡𝑑𝑑𝑂𝑂𝑙𝑙 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑢𝑢𝑝𝑝𝑒𝑒 

𝑥𝑥0~𝜉𝜉0 

Initial Measure 𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝜉𝜉0(𝑑𝑑𝑥𝑥) Terminal Measure 𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿𝑇𝑇(𝑑𝑑𝑡𝑡)𝜉𝜉𝑇𝑇(𝑑𝑑𝑥𝑥) 

Information of time is captured by 
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• Now, we want to describe the time evolution of the function 𝑑𝑑(𝑡𝑡, 𝑥𝑥) in terms of Average occupation measure. 

𝑇𝑇 

Given 𝑥𝑥0 𝑑𝑑 𝑇𝑇, 𝑥𝑥(𝑇𝑇|𝑥𝑥0) = 𝑑𝑑 0, 𝑥𝑥0 + � 
0 
� 
𝑋𝑋 
L𝑑𝑑(𝑥𝑥(𝑡𝑡|𝑥𝑥0)) 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡|𝑥𝑥0)

𝑂𝑂𝑂𝑂𝑂𝑂𝑢𝑢𝑝𝑝𝑎𝑎𝑡𝑡𝑑𝑑𝑂𝑂𝑙𝑙 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑢𝑢𝑝𝑝𝑒𝑒 

�𝑑𝑑 𝑇𝑇, 𝑥𝑥 𝜉𝜉𝑇𝑇(𝑑𝑑𝑥𝑥) = �𝑑𝑑 0, 𝑥𝑥 𝑑𝑑𝜉𝜉0(𝑑𝑑𝑥𝑥) + � 
0 

𝑇𝑇 

� 
𝑋𝑋 
L𝑑𝑑(𝑡𝑡, 𝑥𝑥)𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) 

𝐴𝐴𝑑𝑑𝑒𝑒𝑝𝑝𝑎𝑎𝐴𝐴𝑒𝑒 𝑂𝑂𝑂𝑂𝑂𝑂𝑢𝑢𝑝𝑝𝑎𝑎𝑡𝑡𝑑𝑑𝑂𝑂𝑙𝑙 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑢𝑢𝑝𝑝𝑒𝑒 

𝑥𝑥0~𝜉𝜉0 

Integrating with respect to 𝜉𝜉0 

Terminal Probability of state Initial Probability of state 

�𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇𝑇𝑇 (𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) = �𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇0(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) + � 
0 

𝑇𝑇 

� 
𝑋𝑋 
L𝑑𝑑(𝑡𝑡, 𝑥𝑥)𝑑𝑑𝜇𝜇(𝑥𝑥, 𝑡𝑡)𝑥𝑥0~𝜉𝜉0 

Initial Measure 𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝜉𝜉0(𝑑𝑑𝑥𝑥) Terminal Measure 𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿𝑇𝑇(𝑑𝑑𝑡𝑡)𝜉𝜉𝑇𝑇(𝑑𝑑𝑥𝑥) 

• This describes the relation of 1) initial measure 𝜇𝜇0 𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡 , 2) Terminal measure 𝜇𝜇𝑇𝑇 𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡 3) average occupation measure 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) 

• We will use this equation to describe the relation of the moments (for polynomial 𝑑𝑑 𝑡𝑡, 𝑥𝑥 ) 
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  To obtain the Liouville’s Equation: 

�𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇𝑇𝑇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) = �𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇0(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) + � 
0 

𝑇𝑇 

� 
𝑋𝑋 
L𝑑𝑑(𝑡𝑡, 𝑥𝑥)𝑑𝑑𝜇𝜇(𝑥𝑥, 𝑡𝑡) 

𝐴𝐴𝑑𝑑𝑒𝑒𝑝𝑝𝑎𝑎𝐴𝐴𝑒𝑒 𝑂𝑂𝑂𝑂𝑂𝑂𝑢𝑢𝑝𝑝𝑎𝑎𝑡𝑡𝑑𝑑𝑂𝑂𝑙𝑙 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑢𝑢𝑝𝑝𝑒𝑒 

𝑥𝑥0~𝜉𝜉0 

Information of time is captured by 

Compact form 

In terms of L < 𝑑𝑑, 𝜇𝜇𝑇𝑇 > = < 𝑑𝑑, 𝜇𝜇0 > + < L𝑑𝑑, 𝜇𝜇 > 
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To obtain the Liouville’s Equation: 

�𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇𝑇𝑇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) = �𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇0(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) + � 
0 

𝑇𝑇 

� 
𝑋𝑋 
L𝑑𝑑(𝑡𝑡, 𝑥𝑥)𝑑𝑑𝜇𝜇(𝑥𝑥, 𝑡𝑡) 

𝐴𝐴𝑑𝑑𝑒𝑒𝑝𝑝𝑎𝑎𝐴𝐴𝑒𝑒 𝑂𝑂𝑂𝑂𝑂𝑂𝑢𝑢𝑝𝑝𝑎𝑎𝑡𝑡𝑑𝑑𝑂𝑂𝑙𝑙 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑢𝑢𝑝𝑝𝑒𝑒 

𝑥𝑥0~𝜉𝜉0 

Information of time is captured by 

Compact form 

In terms of L < 𝑑𝑑, 𝜇𝜇𝑇𝑇 > = < 𝑑𝑑, 𝜇𝜇0 > + < L𝑑𝑑, 𝜇𝜇 > 

We can represent in terms of adjoint operator 
𝑛𝑛 

𝜕𝜕𝑑𝑑 𝜕𝜕𝑑𝑑 
Linear Operator: L𝑑𝑑 = + � 𝑓𝑓𝑖𝑖 𝜕𝜕𝑡𝑡 𝜕𝜕𝑥𝑥𝑖𝑖 𝑖𝑖=1 
(Lecture 5 duality) 𝑛𝑛 

𝜕𝜕𝜇𝜇 𝜕𝜕 𝑓𝑓𝑖𝑖𝜇𝜇 𝜕𝜕𝜇𝜇 Adjoint linear operator < 𝑑𝑑 𝑡𝑡, 𝑥𝑥 , L∗𝜇𝜇 > =< L𝑑𝑑(𝑡𝑡, 𝑥𝑥), 𝜇𝜇 > L∗𝜇𝜇 = − −� = − − 𝑑𝑑𝑑𝑑𝑑𝑑(𝑓𝑓𝜇𝜇)
𝜕𝜕𝑡𝑡 𝜕𝜕𝑥𝑥𝑖𝑖 𝜕𝜕𝑡𝑡 

𝑖𝑖=1 

In terms of L∗ < 𝑑𝑑, L∗𝜇𝜇 > =< 𝑑𝑑, 𝜇𝜇𝑇𝑇 > − < 𝑑𝑑, 𝜇𝜇0 > 
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To obtain the Liouville’s Equation: 

�𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇𝑇𝑇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) = �𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇0(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) + � 
0 

𝑇𝑇 

� 
𝑋𝑋 
L𝑑𝑑(𝑡𝑡, 𝑥𝑥)𝑑𝑑𝜇𝜇(𝑥𝑥, 𝑡𝑡) 

𝐴𝐴𝑑𝑑𝑒𝑒𝑝𝑝𝑎𝑎𝐴𝐴𝑒𝑒 𝑂𝑂𝑂𝑂𝑂𝑂𝑢𝑢𝑝𝑝𝑎𝑎𝑡𝑡𝑑𝑑𝑂𝑂𝑙𝑙 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑢𝑢𝑝𝑝𝑒𝑒 

𝑥𝑥0~𝜉𝜉0 

Information of time is captured by 

Compact form 

In terms of L < 𝑑𝑑, 𝜇𝜇𝑇𝑇 > = < 𝑑𝑑, 𝜇𝜇0 > + < L𝑑𝑑, 𝜇𝜇 > 

We can represent in terms of adjoint operator 
𝑛𝑛 

𝜕𝜕𝑑𝑑 𝜕𝜕𝑑𝑑 
Linear Operator: L𝑑𝑑 = + � 𝑓𝑓𝑖𝑖 𝜕𝜕𝑡𝑡 𝜕𝜕𝑥𝑥𝑖𝑖 𝑖𝑖=1 
(Lecture 5 duality) 𝑛𝑛 

𝜕𝜕𝜇𝜇 𝜕𝜕 𝑓𝑓𝑖𝑖𝜇𝜇 𝜕𝜕𝜇𝜇 Adjoint linear operator < 𝑑𝑑 𝑡𝑡, 𝑥𝑥 , L∗𝜇𝜇 > =< L𝑑𝑑(𝑡𝑡, 𝑥𝑥), 𝜇𝜇 > L∗𝜇𝜇 = − −� = − − 𝑑𝑑𝑑𝑑𝑑𝑑(𝑓𝑓𝜇𝜇)
𝜕𝜕𝑡𝑡 𝜕𝜕𝑥𝑥𝑖𝑖 𝜕𝜕𝑡𝑡 

𝑖𝑖=1 

In terms of L∗ < 𝑑𝑑, L∗𝜇𝜇 > =< 𝑑𝑑, 𝜇𝜇𝑇𝑇 > − < 𝑑𝑑, 𝜇𝜇0 > 

This is required to hold for all functions 𝑑𝑑, we obtain a linear PDE on measure as L∗𝜇𝜇 = 𝜇𝜇𝑇𝑇 − 𝜇𝜇0 
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To obtain the Liouville’s Equation: 

�𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇𝑇𝑇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) = �𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇0(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) + � 
0 

𝑇𝑇 

� 
𝑋𝑋 
L𝑑𝑑(𝑡𝑡, 𝑥𝑥)𝑑𝑑𝜇𝜇(𝑥𝑥, 𝑡𝑡) 

𝐴𝐴𝑑𝑑𝑒𝑒𝑝𝑝𝑎𝑎𝐴𝐴𝑒𝑒 𝑂𝑂𝑂𝑂𝑂𝑂𝑢𝑢𝑝𝑝𝑎𝑎𝑡𝑡𝑑𝑑𝑂𝑂𝑙𝑙 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑢𝑢𝑝𝑝𝑒𝑒 

𝑥𝑥0~𝜉𝜉0 

Information of time is captured by 

Compact form 

In terms of L < 𝑑𝑑, 𝜇𝜇𝑇𝑇 > = < 𝑑𝑑, 𝜇𝜇0 > + < L𝑑𝑑, 𝜇𝜇 > 

We can represent in terms of adjoint operator 
𝑛𝑛 

𝜕𝜕𝑑𝑑 𝜕𝜕𝑑𝑑 
Linear Operator: L𝑑𝑑 = + � 𝑓𝑓𝑖𝑖 𝜕𝜕𝑡𝑡 𝜕𝜕𝑥𝑥𝑖𝑖 𝑖𝑖=1 
(Lecture 5 duality) 𝑛𝑛 

𝜕𝜕𝜇𝜇 𝜕𝜕 𝑓𝑓𝑖𝑖𝜇𝜇 𝜕𝜕𝜇𝜇 Adjoint linear operator < 𝑑𝑑 𝑡𝑡, 𝑥𝑥 , L∗𝜇𝜇 > =< L𝑑𝑑(𝑡𝑡, 𝑥𝑥), 𝜇𝜇 > L∗𝜇𝜇 = − −� = − − 𝑑𝑑𝑑𝑑𝑑𝑑(𝑓𝑓𝜇𝜇)
𝜕𝜕𝑡𝑡 𝜕𝜕𝑥𝑥𝑖𝑖 𝜕𝜕𝑡𝑡 

𝑖𝑖=1 

In terms of L∗ < 𝑑𝑑, L∗𝜇𝜇 > =< 𝑑𝑑, 𝜇𝜇𝑇𝑇 > − < 𝑑𝑑, 𝜇𝜇0 > 
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𝜕𝜕𝜇𝜇 

𝜕𝜕𝑡𝑡 
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝜇𝜇 = 𝜇𝜇0 − 𝜇𝜇𝑇𝑇 Liouville’s Equation 

This is required to hold for all functions 𝑑𝑑, we obtain a linear PDE on measure as L∗𝜇𝜇 = 𝜇𝜇𝑇𝑇 − 𝜇𝜇0 



                                                                        

 

  

  

 

 

 

   

Nonlinear ODE: �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial Probability measure of states: 𝜉𝜉0(𝑑𝑑𝑥𝑥) 

Linear PDE: 
𝜕𝜕𝜇𝜇 

(Liouville’s Equation) + 𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝜇𝜇 = 𝜇𝜇0 − 𝜇𝜇𝑇𝑇 Measures is time and state space 𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 , 𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 , 𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 𝜕𝜕𝑡𝑡 

𝑇𝑇 
To describe the moments we will use: �𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇𝑇𝑇 (𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) = �𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇0(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) + � � L𝑑𝑑(𝑡𝑡, 𝑥𝑥)𝜇𝜇(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) 

0 𝑋𝑋 

(Integral form of Liouville’s Equation) 

Average Occupation Measure 
𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡)Initial Measure 

𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝜉𝜉0(𝑑𝑑𝑥𝑥) 

Terminal Measure 
𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿𝑇𝑇 (𝑑𝑑𝑡𝑡)𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) 
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Nonlinear ODE: �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial Probability measure of states: 𝜉𝜉0(𝑑𝑑𝑥𝑥) 

Linear PDE: 
𝜕𝜕𝜇𝜇 

(Liouville’s Equation) + 𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝜇𝜇 = 𝜇𝜇0 − 𝜇𝜇𝑇𝑇 Measures is time and state space 𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 , 𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 , 𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 𝜕𝜕𝑡𝑡 

𝑇𝑇 
To describe the moments we will use: �𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇𝑇𝑇 (𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) = �𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇0(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) + � � L𝑑𝑑(𝑡𝑡, 𝑥𝑥)𝜇𝜇(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) 

0 𝑋𝑋 

(Integral form of Liouville’s Equation) 

Average Occupation Measure 
𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡)Initial Measure 

𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝜉𝜉0(𝑑𝑑𝑥𝑥) 

Terminal Measure 
𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿𝑇𝑇 (𝑑𝑑𝑡𝑡)𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) 

• The mass of 𝜇𝜇0 is one (probability measure). This implies that mass of 𝜇𝜇𝑇𝑇 is one and mass of 𝜇𝜇 is equal to 𝑇𝑇. 
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Moments Time-Evolution: 

We assume that all the functions are polynomials 

𝑑𝑑 𝑡𝑡, 𝑥𝑥 :polynomial 𝑓𝑓 𝑡𝑡, 𝑥𝑥 :polynomial 

�̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 

𝜕𝜕𝑑𝑑 

𝜕𝜕𝑡𝑡 and 
𝑛𝑛 
𝜕𝜕𝑑𝑑 

∇𝑑𝑑 𝑇𝑇 𝑓𝑓 = � 𝑓𝑓𝑖𝑖 : polynomials 𝜕𝜕𝑥𝑥𝑖𝑖 𝑖𝑖=1 

• Moments of 𝜇𝜇0(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡): 𝑦𝑦1 = �𝑡𝑡𝛼𝛼1𝑥𝑥𝛼𝛼2𝜇𝜇0(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) 

• Moments 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡): 

• Moments 𝜇𝜇𝑇𝑇 (𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡): 

𝑦𝑦2 = �𝑡𝑡𝛼𝛼1𝑥𝑥𝛼𝛼2 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) 

𝑦𝑦3 = �𝑡𝑡𝛼𝛼1 𝑥𝑥𝛼𝛼2𝜇𝜇𝑇𝑇 (𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) 
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Moments Time-Evolution: 

We assume that all the functions are polynomials 

𝑑𝑑 𝑡𝑡, 𝑥𝑥 :polynomial 𝑓𝑓 𝑡𝑡, 𝑥𝑥 :polynomial 

�̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 

𝜕𝜕𝑑𝑑 

𝜕𝜕𝑡𝑡 and 
𝑛𝑛 
𝜕𝜕𝑑𝑑 

∇𝑑𝑑 𝑇𝑇 𝑓𝑓 = � 𝑓𝑓𝑖𝑖 : polynomials 𝜕𝜕𝑥𝑥𝑖𝑖 𝑖𝑖=1 

• Moments of 𝜇𝜇0(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡): 𝑦𝑦1 = �𝑡𝑡𝛼𝛼1𝑥𝑥𝛼𝛼2𝜇𝜇0(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) 

• Moments 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡): 𝑦𝑦2 = �𝑡𝑡𝛼𝛼1𝑥𝑥𝛼𝛼2𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) 

• Moments 𝜇𝜇𝑇𝑇 (𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡): 𝑦𝑦3 = �𝑡𝑡𝛼𝛼1𝑥𝑥𝛼𝛼2𝜇𝜇𝑇𝑇 (𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) 

• We choose functions 𝑑𝑑 𝑡𝑡, 𝑥𝑥 which are monomials of the form 𝑡𝑡𝛼𝛼1𝑥𝑥𝛼𝛼2 , 𝛼𝛼1, 𝛼𝛼2 𝑗𝑗, 𝑗𝑗 = 1, … 𝑚𝑚 

𝑇𝑇 

�𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇𝑇𝑇(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) = �𝑑𝑑 𝑡𝑡, 𝑥𝑥 𝜇𝜇0(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) + � � L𝑑𝑑(𝑡𝑡, 𝑥𝑥)𝜇𝜇(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) 
0 𝑋𝑋 
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Moments Time-Evolution: 

We assume that all the functions are polynomials 

𝑑𝑑 𝑡𝑡, 𝑥𝑥 :polynomial 𝑓𝑓 𝑡𝑡, 𝑥𝑥 :polynomial 

�̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 

𝜕𝜕𝑑𝑑 

𝜕𝜕𝑡𝑡 and 
𝑛𝑛 
𝜕𝜕𝑑𝑑 

∇𝑑𝑑 𝑇𝑇 𝑓𝑓 = � 𝑓𝑓𝑖𝑖 : polynomials 𝜕𝜕𝑥𝑥𝑖𝑖 𝑖𝑖=1 

• Moments of 𝜇𝜇0(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡): 𝑦𝑦1 = �𝑡𝑡𝛼𝛼1𝑥𝑥𝛼𝛼2𝜇𝜇0(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) 

• Moments 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡): 𝑦𝑦2 = �𝑡𝑡𝛼𝛼1𝑥𝑥𝛼𝛼2𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) 

• Moments 𝜇𝜇𝑇𝑇 (𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡): 𝑦𝑦3 = �𝑡𝑡𝛼𝛼1𝑥𝑥𝛼𝛼2𝜇𝜇𝑇𝑇 (𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) 

• We choose functions 𝑑𝑑 𝑡𝑡, 𝑥𝑥 which are monomials of the form 𝑡𝑡𝛼𝛼1𝑥𝑥𝛼𝛼2 , 𝛼𝛼1, 𝛼𝛼2 𝑗𝑗, 𝑗𝑗 = 1, … 𝑚𝑚 

�𝑑𝑑𝑗𝑗 𝑡𝑡, 𝑥𝑥 𝜇𝜇𝑇𝑇 (𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) = �𝑑𝑑𝑗𝑗 𝑡𝑡, 𝑥𝑥 𝜇𝜇0(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) + �L𝑑𝑑𝑗𝑗 (𝑡𝑡, 𝑥𝑥)𝜇𝜇(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) 𝑗𝑗 = 1, … 𝑚𝑚 

Moments of 𝜇𝜇𝑇𝑇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) Moments of 𝜇𝜇0(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) Moments of 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) 
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Moments Time-Evolution: 

We assume that all the functions are polynomials 

𝑑𝑑 𝑡𝑡, 𝑥𝑥 :polynomial 𝑓𝑓 𝑡𝑡, 𝑥𝑥 :polynomial 

�̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 

𝜕𝜕𝑑𝑑 

𝜕𝜕𝑡𝑡 and 
𝑛𝑛 
𝜕𝜕𝑑𝑑 

∇𝑑𝑑 𝑇𝑇 𝑓𝑓 = � 𝑓𝑓𝑖𝑖 : polynomials 𝜕𝜕𝑥𝑥𝑖𝑖 𝑖𝑖=1 

• Moments of 𝜇𝜇0(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡): 𝑦𝑦1 = �𝑡𝑡𝛼𝛼1𝑥𝑥𝛼𝛼2𝜇𝜇0(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) 

• Moments 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡): 𝑦𝑦2 = �𝑡𝑡𝛼𝛼1𝑥𝑥𝛼𝛼2𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) 

• Moments 𝜇𝜇𝑇𝑇 (𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡): 𝑦𝑦3 = �𝑡𝑡𝛼𝛼1𝑥𝑥𝛼𝛼2𝜇𝜇𝑇𝑇 (𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡) 

• We choose functions 𝑑𝑑 𝑡𝑡, 𝑥𝑥 which are monomials of the form 𝑡𝑡𝛼𝛼1𝑥𝑥𝛼𝛼2 , 𝛼𝛼1, 𝛼𝛼2 𝑗𝑗, 𝑗𝑗 = 1, … 𝑚𝑚 

�𝑑𝑑𝑗𝑗 𝑡𝑡, 𝑥𝑥 𝜇𝜇𝑇𝑇 (𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) = �𝑑𝑑𝑗𝑗 𝑡𝑡, 𝑥𝑥 𝜇𝜇0(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) + �L𝑑𝑑𝑗𝑗 (𝑡𝑡, 𝑥𝑥)𝜇𝜇(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) 𝑗𝑗 = 1, … 𝑚𝑚 

3 

Linear sum of the moments: � � 𝑎𝑎𝑖𝑖𝑗𝑗𝛼𝛼𝑦𝑦𝑖𝑖𝛼𝛼 = 𝑏𝑏𝑗𝑗 𝑑𝑑 = 1, … , 3 𝑗𝑗 = 1, … 𝑚𝑚 

𝑖𝑖=1 𝛼𝛼 
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Nonlinear ODE: �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

• Initial Probability measure of states: 𝜉𝜉0(𝑑𝑑𝑥𝑥) 

 Information of the nonlinear ODE in measure: 

𝜕𝜕𝜇𝜇 
Linear PDE: + 𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝜇𝜇 = 𝜇𝜇0 − 𝜇𝜇𝑇𝑇 Measures is time and state space 𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 , 𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 , 𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 

𝜕𝜕𝑡𝑡 

 Information of the nonlinear ODE in moments: 

3 

� � 𝑎𝑎𝑖𝑖𝑗𝑗𝛼𝛼𝑦𝑦𝑖𝑖𝛼𝛼 = 𝑏𝑏𝑗𝑗 𝑑𝑑 = 1, … , 3 𝑗𝑗 = 1, … 𝑚𝑚 
𝑖𝑖=1 𝛼𝛼 

Obtained by �𝑑𝑑𝑗𝑗 𝑡𝑡, 𝑥𝑥 𝜇𝜇𝑇𝑇(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) = �𝑑𝑑𝑗𝑗 𝑡𝑡, 𝑥𝑥 𝜇𝜇0(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) + �L𝑑𝑑𝑗𝑗 𝑡𝑡, 𝑥𝑥 𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 , 𝑑𝑑𝑗𝑗 𝑡𝑡, 𝑥𝑥 = 𝑡𝑡𝛼𝛼1 𝑥𝑥𝛼𝛼2 𝛼𝛼1, 𝛼𝛼2 𝑗𝑗 , 𝑗𝑗 = 1, … . , 𝑚𝑚 
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Dealing with uncertainty 

• We can incorporate real parametric uncertainty in the dynamics. 

• Each uncertain parameter must be introduced as an additional state of the system. 

New states: [𝑥𝑥, 𝜔𝜔]�̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥 𝑡𝑡 , 𝜔𝜔) �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥 𝑡𝑡 , 𝜔𝜔) 
�̇�𝜔 𝑡𝑡 = 0 
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Dealing with uncertainty 

• We can incorporate real parametric uncertainty in the dynamics. 

• Each uncertain parameter must be introduced as an additional state of the system. 

New states: [𝑥𝑥, 𝜔𝜔]�̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥 𝑡𝑡 , 𝜔𝜔) �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥 𝑡𝑡 , 𝜔𝜔) 
�̇�𝜔 𝑡𝑡 = 0 

• Unknow parameter 
• 𝜔𝜔~Probability distribution 
• It is fixed in time. 
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 Occupation Measure and Liouville’s Equation 

 Trajectory Optimization 

 Optimal Control 

 Region of Attraction Set 

 Nonlinear Feedback Control and Backward Reachable Set 

1) Reformulate the problem as nonlinear optimization with differential constraints 

2) Replace the differential constraints with linear PDE and reformulated the problem 
terms of measure (Linear Program in measures). 

3) Use the moment representation of the measure (SDP in moments). 
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Topics: 

 Occupation Measure and Liouville’s Equation 

 Trajectory Optimization 

 Optimal Control 

 Region of Attraction Set 

 Nonlinear Feedback Control and Backward Reachable Set 
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Trajectory Optimization 

D. Henrion, M. Ganet-Schoeller, S. Bennani. ”Measures and LMI for space launcher robust control validation”, Proceedings of the IFAC Symposium on Robust 
Control Design, Aalborg, Denmark, June 2012. 

D. Henrion ”Optimization on linear matrix inequalities for polynomial systems control”, Lecture notes used for a tutorial course given during the 
International Summer School of Automatic Control held at Grenoble, France, in September 2014. 
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Consider the following dynamic optimization problem with polynomial differential constraints 

State trajectory 𝑥𝑥(𝑡𝑡) constrained in a compact basic semialgebraic set 

Initial and terminal states are constrained in compact basic semialgebraic sets 
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Consider the following dynamic optimization problem with polynomial differential constraints 

• The final time T is either given, or free, in which case it becomes a decision variable, jointly with 𝑥𝑥(𝑡𝑡). 
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Consider the following dynamic optimization problem with polynomial differential constraints 

• The final time T is either given, or free, in which case it becomes a decision variable, jointly with 𝑥𝑥(𝑡𝑡). 

We look for trajectory 𝑥𝑥(𝑡𝑡) starting in 𝑋𝑋0, ending in 𝑋𝑋𝑇𝑇 , and staying in 𝑋𝑋 that minimizes the given cost. 
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 Nonlinear Dynamic Optimization: 

• We encode the state trajectory 𝑥𝑥(𝑡𝑡) in an occupation measure 𝜇𝜇 and we come up with an infinite-dimensional LP problem: 
𝜕𝜕𝜇𝜇 �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) + 𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝜇𝜇 = 𝜇𝜇0 − 𝜇𝜇𝑇𝑇 𝜕𝜕𝑡𝑡 
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Nonlinear Dynamic Optimization: 

• We encode the state trajectory 𝑥𝑥(𝑡𝑡) in an occupation measure 𝜇𝜇 and we come up with an infinite-dimensional LP problem: 
𝜕𝜕𝜇𝜇 �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡)) + 𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝜇𝜇 = 𝜇𝜇0 − 𝜇𝜇𝑇𝑇 𝜕𝜕𝑡𝑡 

Objective function 
𝑇𝑇 𝑇𝑇 𝑇𝑇 

min � 𝑙𝑙 𝑡𝑡, 𝑥𝑥(𝑡𝑡) 𝑑𝑑𝑡𝑡 min E � 𝑙𝑙 𝑡𝑡, 𝑥𝑥(𝑡𝑡) 𝑑𝑑𝑡𝑡 =� � 𝑙𝑙 𝑡𝑡, 𝑥𝑥(𝑡𝑡) 𝑑𝑑𝑡𝑡 𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡)
0 0 0Lecture 3: 𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡)

𝑇𝑇 Average occupation measure moment based 
= � � 𝑙𝑙 𝑡𝑡, 𝑥𝑥(𝑡𝑡) 𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡)nonlinear optimization 0 

=< 𝑙𝑙, 𝜇𝜇 > 
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Nonlinear Dynamic Optimization: 

Infinite-dimensional LP problem: 

Initial measure: 
Terminal measure: 
Average Occupation Measure: 

• 𝜇𝜇0 , 𝜇𝜇𝑇𝑇 and 𝑇𝑇 can be free, or given. 
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Nonlinear Dynamic Optimization: 

Infinite-dimensional LP problem: 

Initial measure: 
Terminal measure: 
Average Occupation Measure: 

• If terminal time 𝑇𝑇 is free and function 𝑙𝑙 in objective function and the dynamics 𝑓𝑓 do not depend explicitly on time 𝑡𝑡, 
Then it can be shown without loss of generality that in measure-LP measures do not depend explicitly on time either. 

The terminal time is equal to the mass of the occupation measure 𝑇𝑇 = 𝜇𝜇(𝑋𝑋) 
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Infinite-dimensional LP problem: 



Example: 

 ODE �̇�𝑥 𝑡𝑡 = −𝑥𝑥(𝑡𝑡) 

We want to find trajectories minimizing the state energy 
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Example: 

 ODE �̇�𝑥 𝑡𝑡 = −𝑥𝑥(𝑡𝑡) 

We want to find trajectories minimizing the state energy 

                                                                        

    

 

 

 

 Variables of LP in measures: 

• Initial Measure 𝜇𝜇0 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿0(𝑑𝑑𝑡𝑡)𝜉𝜉0(𝑑𝑑𝑥𝑥) supported on 

• Terminal Measure 𝜇𝜇𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝛿𝛿𝑇𝑇 (𝑑𝑑𝑡𝑡)𝜉𝜉𝑇𝑇 (𝑑𝑑𝑥𝑥) supported on 

• Average occupation measure 𝜇𝜇 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡𝑑𝑑𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡) supported on 
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Example: 

We want to find trajectories minimizing the state energy 

Infinite-dimensional LP problem: 

                                                                        

    

      

  

  

(1) 
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w.r.t. terminal time 𝑇𝑇 and nonnegative measures 𝜇𝜇, 𝜇𝜇0, 𝜇𝜇𝑇𝑇 supported on 0, 𝑇𝑇 × 𝑋𝑋, 0 × 𝑋𝑋0 , 𝑇𝑇 

Free final Time 𝑇𝑇: 

𝜇𝜇, 𝜇𝜇0, 𝜇𝜇𝑇𝑇 supported on 𝑋𝑋, 𝑋𝑋0 , 𝑋𝑋𝑇𝑇 . 

(2) 

× 𝑋𝑋𝑇𝑇 . 



                                                                        

   

     

Example: 

• This problem can be solved analytically, with optimal trajectory 

= 𝑒𝑒−𝑡𝑡 1𝑥𝑥 𝑡𝑡 leaving 𝑋𝑋0 at 𝑥𝑥 0 = 1 and reaching 𝑋𝑋𝑇𝑇 at 𝑥𝑥 𝑇𝑇 = 
2 

for 𝑇𝑇 = 𝑙𝑙𝑂𝑂𝐴𝐴𝑙 ≈ 0.6931 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 84 



                                                                        

   

     

   

   

Example: 

• This problem can be solved analytically, with optimal trajectory 
1 = 𝑒𝑒−𝑡𝑡 𝑥𝑥 𝑡𝑡 leaving 𝑋𝑋0 at 𝑥𝑥 0 = 1 and reaching 𝑋𝑋𝑇𝑇 at 𝑥𝑥 𝑇𝑇 = 
2 

for 𝑇𝑇 = 𝑙𝑙𝑂𝑂𝐴𝐴𝑙 ≈ 0.6931 

(1) 

• So the optimal measures solving the LP are 

= 𝑒𝑒−𝑡𝑡 1𝑥𝑥 𝑡𝑡 𝑥𝑥 0 = 1 𝑥𝑥 𝑇𝑇 = 𝑙𝑙𝑂𝑂𝐴𝐴𝑙 = 
2 
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• So the optimal measures solving the LP are 

(2) 



                                                                        

    

   

Infinite-dimensional LP problem: 

Initial measure: 
Terminal measure: 
Occupation Measure: 

To obtain finite SDP, we will work with finite number of moments: 
3 

• Moments of measure: � � 𝑎𝑎𝑖𝑖𝑗𝑗𝛼𝛼𝑦𝑦𝑖𝑖𝛼𝛼 = 𝑏𝑏𝑗𝑗 𝑑𝑑 = 1, … , 3 𝑗𝑗 = 1, … , 𝑚𝑚 
𝑖𝑖=1 𝛼𝛼 

• Moments should also satisfy Moment and Localizing Matrices 
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Initial measure: 
Terminal measure: 

Infinite-dimensional LP problem: 

Occupation Measure: 

Moment Formulation 

𝑙𝑙 = 3 
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𝑙𝑙 = 3 

Moment SDP: 



Example: 
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We want to find trajectories minimizing the state energy 

Measure in LP for free final time 𝑇𝑇: 

𝜇𝜇, 𝜇𝜇0, 𝜇𝜇𝑇𝑇 supported on 𝑋𝑋, 𝑋𝑋0 , 𝑋𝑋𝑇𝑇 . 

𝑑𝑑 = 𝑥𝑥𝛼𝛼 (Integral form of Liouville’s Equation) 

                                                                        

    

  

  

   



                                                                        

 

Example: 
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Moment SDP: 

Moment and Localizing Matrices 



                                                                        

   

     

   

 
 

Example: 

• This problem can be solved analytically, with optimal trajectory 

= 𝑒𝑒−𝑡𝑡 1𝑥𝑥 𝑡𝑡 leaving 𝑋𝑋0 at 𝑥𝑥 0 = 1 and reaching 𝑋𝑋𝑇𝑇 at 𝑥𝑥 𝑇𝑇 = 
2 

for 𝑇𝑇 = 𝑙𝑙𝑂𝑂𝐴𝐴𝑙 ≈ 0.6931 

• So the optimal measures solving the LP are 

Optimal moments: 

Initial moments : Moments of 𝛿𝛿1 

Terminal moments :Moments of 𝛿𝛿1 
2 

Moments of 
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Example: 

• This problem can be solved analytically, with optimal trajectory 
1 = 𝑒𝑒−𝑡𝑡 𝑥𝑥 𝑡𝑡 leaving 𝑋𝑋0 at 𝑥𝑥 0 = 1 and reaching 𝑋𝑋𝑇𝑇 at 𝑥𝑥 𝑇𝑇 = 
2 

for 𝑇𝑇 = 𝑙𝑙𝑂𝑂𝐴𝐴𝑙 ≈ 0.6931 

Optimal moments: 

: Moments of 𝛿𝛿1 

:Moments of 𝛿𝛿1 
2 

Initial moments 

Terminal moments 

Moments of 

• The moment matrices of the initial and terminal measures both have rank one 
1 

𝑥𝑥 0 = 1 𝑥𝑥 𝑇𝑇 == 𝑦𝑦0𝛼𝛼=1 
= 𝑦𝑦𝑇𝑇𝛼𝛼=1 𝑙 

• To recover the trajectory 𝑥𝑥 𝑡𝑡 we need to look at Dual problem in polynomials. 
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Extension to piecewise polynomial dynamics 

                                                                        

          

          
   

• We assume that the state-space partitioning sets are disjoint. 

• We can then extend the measure LP framework to several measures 𝜇𝜇𝑗𝑗, one supported on each cell 𝑋𝑋𝑗𝑗 

so that the global (average )occupation measure is 
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Extension to piecewise polynomial dynamics 

• We assume that the state-space partitioning sets are disjoint. 

• We can then extend the measure LP framework to several measures 𝜇𝜇𝑗𝑗, one supported on each cell 𝑋𝑋𝑗𝑗 

so that the global (average )occupation measure is 

 Measure LP: 

(Liouville’s Equation) 

 Moment SDP 

(Integral form of 
Liouville’s Equation) 
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Example: one-degree-of-freedom model of a launcher attitude control system in orbital phase 

where 𝐼𝐼 is a given constant inertia, 𝜃𝜃(𝑡𝑡) is the angle and 𝑢𝑢(𝑡𝑡) is the torque control 

• The torque control is given by 

                                                                        

  

     

   
   

  

 

where 𝑥𝑥𝑟𝑟(𝑡𝑡) is the given reference signal, 
𝐹𝐹 is a given state feedback, 
𝑚𝑚𝑎𝑎𝑡𝑡 is a saturation function 

𝑑𝑑𝑑𝑑 is a dead-zone function such that 

Thresholds 𝐿𝐿 > 0, 𝐷𝐷1 > 0, 𝐷𝐷2 > 0 are given. 

Trajectory Optimization: 

T=50 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 94 



                                                                        

  

  

  

 

�̇�𝑥 𝑡𝑡 = 
𝑥𝑥1 𝑡𝑡 
𝑢𝑢 𝑥𝑥(𝑡𝑡) 

𝐼𝐼 

Due to saturation function 

We have 3 partition of state-space: 

Linear regime: 

Upper saturation 

Lower saturation 

The system state 𝑥𝑥(𝑡𝑡) reaches a given subset 𝑋𝑋𝑇𝑇 = {(𝑥𝑥1, 𝑥𝑥2): 𝑥𝑥𝑇𝑇𝑥𝑥 ≤ 𝜖𝜖} The objective function of the optimization: 
𝑥𝑥 𝑇𝑇 𝑇𝑇𝑥𝑥(𝑇𝑇) 
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 • For more examples and codes 

https://homepages.laas.fr/henrion/papers/safev.pdf 
D. Henrion, M. Ganet-Schoeller, S. Bennani. ”Measures and LMI for space launcher robust control validation”, Proceedings of the IFAC Symposium on Robust 
Control Design, Aalborg, Denmark, June 2012. 
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Topics: 

 Occupation Measure and Liouville’s Equation 

 Trajectory Optimization 

 Optimal Control 

 Region of Attraction Set 

 Nonlinear Feedback Control and Backward Reachable Set 
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Optimal Control 

D. Henrion, J. B. Lasserre, C. Savorgnan, Nonlinear optimal control synthesis via occupation measures, Proc. IEEE Conf. Decision and Control, 2008. 

J. B. Lasserre, D. Henrion, C. Prieur, E. Tr´elat, Nonlinear optimal control via occupation measures and LMI relaxations, SIAM J. Control Opt., 47(4):1643-
1666, 2008. 

POCP - Matlab package for solving polynomial optimal control problems. Can be freely downloaded and used. Developed by Didier Henrion, Jean-Bernard 
Lasserre and Carlo Savorgnan. http://homepages.laas.fr/henrion/software/pocp/ 
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Optimal control problem: 

Optimization with respect to a control law 𝑢𝑢 over 𝑡𝑡 ∈ [0, 𝑇𝑇] 
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Occupation Measure: 

• Given an initial condition 𝒙𝒙𝟎𝟎, the occupation measure of a trajectory 𝑥𝑥(𝑡𝑡|𝑥𝑥0) is defined by 

occupation measure: 𝜇𝜇( 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 |𝑥𝑥0) = � 𝐈𝐈𝑆𝑆𝑥𝑥 
(𝑥𝑥(𝑡𝑡|𝑥𝑥0))𝑑𝑑𝑡𝑡 given sets 𝑆𝑆𝑡𝑡 ⊂ 0, 𝑇𝑇 , 𝑆𝑆𝑥𝑥 ⊂ Χ 

𝑆𝑆𝑡𝑡 

 Geometric interpretation: measures the time spent by the graph of the trajectory (t, 𝑥𝑥 𝑡𝑡 𝑥𝑥0 ) in a given set 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 

Controlled Occupation Measure: 

• Given an initial condition 𝒙𝒙𝟎𝟎, and a control law 𝒖𝒖(𝒕𝒕), the controlled occupation measure of a 
trajectory 𝑥𝑥(𝑡𝑡|𝑥𝑥0, 𝑢𝑢) is defined by 

Controlled occupation measure: 𝜇𝜇( 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 × 𝑆𝑆𝑢𝑢|𝑥𝑥0, 𝑢𝑢) = � 𝐈𝐈𝑆𝑆𝑥𝑥×𝑆𝑆𝑢𝑢 
(𝑥𝑥(𝑡𝑡|𝑥𝑥0, 𝑢𝑢))𝑑𝑑𝑡𝑡 given sets 𝑆𝑆𝑡𝑡 ⊂ 0, 𝑇𝑇 , 𝑆𝑆𝑥𝑥 ⊂ Χ 

𝑆𝑆𝑡𝑡 𝑆𝑆𝑢𝑢 ⊂ U 

 Geometric interpretation : measures the time spent by the graph of the trajectory (t, 𝑥𝑥 𝑡𝑡 𝑥𝑥0, 𝑢𝑢 , 𝑢𝑢(𝑡𝑡)) in a given set 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 × 𝑆𝑆𝑢𝑢 . 
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Average Occupation Measure: 
Given an initial probability measure of states 𝜉𝜉0, the average occupation measure of the flow of trajectories is defined by 

𝜇𝜇(𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥) = � 𝜇𝜇 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥|𝑥𝑥0 𝜉𝜉0(𝑑𝑑𝑥𝑥) given sets 𝑆𝑆𝑡𝑡 ⊂ 0, 𝑇𝑇 , 𝑆𝑆𝑥𝑥 ⊂ Χ 
𝑋𝑋 

Occupation measure 
(spent time for single 𝑥𝑥 𝑡𝑡 𝑥𝑥0 ) 

Average Controlled Occupation Measure: 

Given an initial measure 𝜉𝜉0, and control 𝑢𝑢(𝑡𝑡), the average occupation measure of the flow of trajectories is defined by 

𝜇𝜇 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 × 𝑆𝑆𝑢𝑢|𝑢𝑢 = � 𝜇𝜇( 𝑆𝑆𝑡𝑡 × 𝑆𝑆𝑥𝑥 × 𝑆𝑆𝑢𝑢|𝑥𝑥0, 𝑢𝑢)𝜉𝜉0(𝑑𝑑𝑥𝑥0) given sets 𝑆𝑆𝑡𝑡 ⊂ 0, 𝑇𝑇 , 𝑆𝑆𝑥𝑥 ⊂ Χ 
𝑋𝑋 

𝑆𝑆𝑢𝑢 ⊂ U 

 Average Controlled Occupation Measure, initial measure, terminal measure, i.e. 𝜇𝜇, 𝜇𝜇0, 𝜇𝜇𝑇𝑇, are linked by a linear PDE. 
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 Average Controlled Occupation Measure, initial measure, terminal measure, i.e. 𝜇𝜇, 𝜇𝜇0, 𝜇𝜇𝑇𝑇 , are linked by a linear PDE. 

Controlled Liouville Equation 

• The difference with the uncontrolled Liouville equation is that both 𝜇𝜇 and 𝑓𝑓 now also depend on the control variable 𝑢𝑢. 

• An occupation measure satisfying Controlled Liouville Equation encodes state trajectories but also control trajectories. 

LP in measure: 

Moment SDP: moment representation of the measures. 

Moment of Measures: 𝑦𝑦𝛼𝛼 = �𝑡𝑡𝛼𝛼1𝑥𝑥𝛼𝛼2𝑢𝑢𝛼𝛼3𝜇𝜇(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑡𝑡, 𝑑𝑑𝑢𝑢) 
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Relaxed control 

We consider following (disintegrated) form for Average Controlled Occupation Measure: 

the three components are as follows 

• 𝑑𝑑𝑡𝑡 is the time marginal,( the Lebesgue measure of time ) 

• 𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡) is the distribution of state for given time 𝑡𝑡 

• 𝜔𝜔(𝑑𝑑𝑢𝑢|𝑡𝑡, 𝑥𝑥) is the distribution of the control conditional on 𝑡𝑡 and 𝑥𝑥 ( probability measure on 𝑈𝑈 for each 𝑡𝑡 ∈ [0, 𝑇𝑇] ) 

 instead of a control law 𝑢𝑢, we have a relaxed control, a probability measure 

parametrized in time 𝑡𝑡 ∈ [0, 𝑇𝑇] and space 𝑥𝑥 ∈ 𝑋𝑋. ( Young measures) 
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Relaxed control 

We consider following (disintegrated) form for Average Controlled Occupation Measure: 

the three components are as follows 

• 𝑑𝑑𝑡𝑡 is the time marginal,( the Lebesgue measure of time ) 

• 𝜉𝜉(𝑑𝑑𝑥𝑥|𝑡𝑡) is the distribution of state for given time 𝑡𝑡 

• 𝜔𝜔(𝑑𝑑𝑢𝑢|𝑡𝑡, 𝑥𝑥) is the distribution of the control conditional on 𝑡𝑡 and 𝑥𝑥 ( probability measure on 𝑈𝑈 for each 𝑡𝑡 ∈ [0, 𝑇𝑇] ) 

 instead of a control law 𝑢𝑢, we have a relaxed control, a probability measure 

parametrized in time 𝑡𝑡 ∈ [0, 𝑇𝑇] and space 𝑥𝑥 ∈ 𝑋𝑋. ( Young measures) 

Instead of working with �̇�𝑥 𝑡𝑡 = 𝑓𝑓(𝑥𝑥 𝑡𝑡 , 𝑢𝑢 𝑡𝑡 , 𝑡𝑡) We work with �̇�𝑥 𝑡𝑡 = ∫𝑈𝑈 
𝑓𝑓 𝑥𝑥 𝑡𝑡 , 𝑢𝑢 𝑡𝑡 , 𝑡𝑡 𝜔𝜔(𝑑𝑑𝑢𝑢|𝑡𝑡, 𝑥𝑥) 

• The set of trajectories modeled by the controlled Liouville equation is larger than the set of trajectories of the original control system. 
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Example: 

Corresponding autonomous measure LP: 

• In terms of moments 
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Example: 

This example can be solved analytically 

= 𝑒𝑒−𝑡𝑡 Optimal solution: 𝑢𝑢 𝑡𝑡 = −𝑥𝑥(𝑡𝑡) 𝑥𝑥 𝑡𝑡 

∞ 

Optimal occupation measure 𝜇𝜇 𝑑𝑑𝑥𝑥, 𝑑𝑑𝑢𝑢 = � 𝛿𝛿𝑒𝑒−𝑡𝑡 𝑑𝑑𝑥𝑥 𝛿𝛿−𝑒𝑒−𝑡𝑡 𝑑𝑑𝑢𝑢 𝑑𝑑𝑡𝑡 
0 

∞ 

−1 𝛼𝛼2 �With moments: 𝑦𝑦𝛼𝛼 = 𝑒𝑒− 𝛼𝛼1+𝛼𝛼2 𝑡𝑡𝑑𝑑𝑡𝑡 
0 

1 = −1 1𝑦𝑦10 = 1, 𝑦𝑦01 = −1, 𝑦𝑦20 = 
2
, 𝑦𝑦11 2

, 𝑦𝑦02 = 
2 

Solution obtained by solving moment SDP 
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Optimal control recovery 

• To recover the optimal control, or the optimal state trajectory from the moments, 
we can use the dual problem, which is a relaxation of the Hamilton-Jacobi-Bellman PDE of optimal control. 
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Optimal control recovery 

• To recover the optimal control, or the optimal state trajectory from the moments, 
we can use the dual problem, which is a relaxation of the Hamilton-Jacobi-Bellman PDE of optimal control. 

• Using the duality of moments and SOS polynomials (lecture 5) and defining adjoint linear operator, dual reads as: 

𝑋𝑋 =𝑋𝑋𝑇𝑇 𝑋𝑋0= 
In terms of the parameters of the set  initial , final, and state sets 

and cost-function of optimal control: 

• Constraints are polynomial nonnegativity conditions. 
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Optimal control recovery 

𝑋𝑋 =𝑋𝑋𝑇𝑇 𝑋𝑋0= 
In terms of the parameters of the set  initial , Terminal, and Trajectory sets 

and cost-function of optimal control: 

 Every feasible solution 𝜑𝜑 is such that: 

∀ 𝑡𝑡, 𝑥𝑥, 𝑢𝑢 

∀ 𝑥𝑥 ∈ 𝑋𝑋𝑇𝑇 (Terminal Set) 

1) 

2) 

∈ 𝑋𝑋 (Trajectory Set) 
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• Polynomial ϕ(𝑡𝑡, 𝑥𝑥) is polynomial subsolution of the Hamilton-Jacobi-Bellman equation which approximates the value 
function along all the optimal trajectories. 

• Therefore, given an optimal solution ϕ(𝑡𝑡, 𝑥𝑥) of the SOS optimization, control law 𝑢𝑢(𝑥𝑥(𝑡𝑡)) is a global minimizer of 

POCP - Matlab package for solving polynomial optimal control problems 
http://homepages.laas.fr/henrion/software/pocp/ 

D. Henrion, J. B. Lasserre, C. Savorgnan, Nonlinear optimal control synthesis via occupation measures, Proc. IEEE Conf. Decision and Control, 2008. 

J. B. Lasserre, D. Henrion, C. Prieur, E. Tr´elat, Nonlinear optimal control via occupation measures and LMI relaxations, SIAM J. Control Opt., 47(4):1643-
1666, 2008. 

POCP - Matlab package for solving polynomial optimal control problems. Can be freely downloaded and used. Developed by Didier Henrion, Jean-Bernard 
Lasserre and Carlo Savorgnan. http://homepages.laas.fr/henrion/software/pocp/ 
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Topics: 

 Occupation Measure and Liouville’s Equation 

 Trajectory Optimization 

 Optimal Control 

 Region of Attraction Set 

 Nonlinear Feedback Control and Backward Reachable Set 
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Region Of Attraction Set 

M. Korda, D. Henrion, C. N. Jones ,”Region of attraction approximations for polynomial dynamical systems”, Conference on Geometry and Algebra of
Linear Matrix Inequalities, GeoLMI 2013 , http://homepages.laas.fr/henrion/geolmi13/korda.pdf

D. Henrion, M. Korda. Convex computation of the region of attraction of polynomial control systems, IEEE Transactions on Automatic Control, Vol. 59, No. 2, pp. 
297-312, 2014.

M. Korda, D. Henrion, C. N. Jones. Controller design and region of attraction estimation for nonlinear dynamical systems , Proceedings at the IFAC World 
Congress on Automatic Control, Cape Town, South Africa, August 2014.

M. Korda, D. Henrion, C. N. Jones. Inner approximations of the region of attraction for polynomial dynamical systems, Proceedings of the IFAC Symposium on 
Nonlinear Control Systems, Toulouse, France, September 2013.
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System: �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥 𝑡𝑡 , 𝜔𝜔) 𝑡𝑡 ∈ [0, 𝑇𝑇] 𝑥𝑥 ∈ 𝑋𝑋 

Given Terminal Set 𝑋𝑋𝑇𝑇 

Region Of Attraction Set 

• ROA is the set of all initial conditions for which there exists an admissible trajectory, 
i.e., the set of all initial conditions that can be steered to the target set in an 
admissible way. 

𝑿𝑿𝑻𝑻 

𝑿𝑿𝟎𝟎 𝑿𝑿 
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• ROA set is characterized with the support set of initial measure. 
• Look for initial measure that can be steered to the target set. 
• Initial and terminal measures are linked through Liouville’s Equation. 

M. Korda, D. Henrion, C. N. Jones ,”Region of attraction approximations for polynomial dynamical systems”, Conference on Geometry and Algebra of Linear Matrix Inequalities, GeoLMI 2013 
, http://homepages.laas.fr/henrion/geolmi13/korda.pdf 
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• To obtain largest ROA set, maximize the volume of initial measure. 

max 𝜇𝜇0(𝑋𝑋) = ∫𝑋𝑋 
𝑑𝑑𝜇𝜇0 

• Optimal initial measure is the Lebesgue measure over the ROA set. 

M. Korda, D. Henrion, C. N. Jones ,”Region of attraction approximations for polynomial dynamical systems”, Conference on Geometry and Algebra of Linear Matrix Inequalities, GeoLMI 2013 
, http://homepages.laas.fr/henrion/geolmi13/korda.pdf 
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LP in measure 

(2) Liouville's Equation captures the information of dynamical system. 

(3) To ensures that the optimal value is the Lebesgue measure Slack measure 

(4) Support set of measures 

D. Henrion, M. Korda. Convex computation of the region of attraction of polynomial control systems, IEEE Transactions on Automatic Control, Vol. 59, No. 2, pp. 297-
312, 2014. 

(1) We model ROA with the support of initial measure 𝜇𝜇0 max 𝜇𝜇0(𝑋𝑋) = ∫𝑋𝑋 

(1) 
(2) 
(3) 

(4) 

𝑑𝑑𝜇𝜇0 
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 LP in measure 

Dual Optimization (SOS Optimization) 

• 𝑅𝑅𝑂𝑂𝐴𝐴 ⊂ {𝑥𝑥: 𝜔𝜔 𝑥𝑥 − 1 ≥ 0} 
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• 𝑅𝑅𝑂𝑂𝐴𝐴 ⊂ {𝑥𝑥: 𝜔𝜔 𝑥𝑥 − 1 ≥ 0} 
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Dual 

(1) 
(2)
(3) 

Interpretation: similar to barrier function based safety verification(Lecture 8, page 29) 

(1): 𝑑𝑑 is decreasing along trajectories of the system. 

(3): 𝑑𝑑 𝑇𝑇, 𝑥𝑥 ≥ 0 on 𝑋𝑋𝑇𝑇. 

(1) and (3): {𝑥𝑥: 𝑑𝑑 0, 𝑥𝑥 < 0} is an inner approximation to the set of points that cannot reach the target set. 

• Hence, {𝑥𝑥: 𝑑𝑑 0, 𝑥𝑥 ≥ 0} is an outer approximation to the set of points reach the target set. 

• 𝑅𝑅𝑂𝑂𝐴𝐴 ⊂ 𝑥𝑥: 𝑑𝑑 0, 𝑥𝑥 ≥ 0 = {𝑥𝑥: 𝜔𝜔 𝑥𝑥 − 1 ≥ 0} (2) 
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Inner approximation 

• 
to the target set, i.e., {𝑥𝑥: 𝜔𝜔 𝑥𝑥 − 1 ≥ 0} 

• Inner approximation of ROA: {𝑥𝑥: 𝜔𝜔 𝑥𝑥 − 1 < 0} 

One can apply the same methodology to find the outer approximation of the set of all initial states that can NOT be steered 
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 ROA Code: https://homepages.laas.fr/henrion/software/ 

D. Henrion, M. Korda. Convex computation of the region of attraction of polynomial control systems, IEEE Transactions on Automatic Control, Vol. 59, No. 2, pp. 297-312, 2014. 
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𝑋𝑋 = {𝑥𝑥 : 𝑥𝑥 ≤ 𝜖𝜖 }𝑇𝑇 

ROA Code: https://homepages.laas.fr/henrion/software/ 

D. Henrion, M. Korda. Convex computation of the region of attraction of polynomial control systems, IEEE Transactions on Automatic Control, Vol. 59, No. 2, pp. 297-312, 2014. 
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Topics: 

 Occupation Measure and Liouville’s Equation 

 Trajectory Optimization 

 Optimal Control 

 Region of Attraction Set 

 Nonlinear Feedback Control and Backward Reachable Set 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 125 



                                                                        

          
   

           
   

Nonlinear Feedback Control 
and 

Backward Reachable Set 

Anirudha Majumdar, Ram Vasudevan, Mark M. Tobenkin, and Russ Tedrake. Convex optimization of nonlinear feedback controllers via occupation measures. 
International Journal of Robotics Research (IJRR), 33(9):1209-1230, August 2014 

Anirudha Majumdar, Ram Vasudevan, Mark M. Tobenkin, and Russ Tedrake. Convex optimization of nonlinear feedback controllers via occupation measures. In 
Proceedings of Robotics: Science and Systems (RSS), 2013 
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• Control-affine system with feedback control 

• Input constraint 

• Bounding set, and target set as 

• Given a finite final time 𝑇𝑇 > 0, let the backwards reachable set (BRS) for a particular control policy 𝑢𝑢 be defined as: 

                                                                        

   

  

         

             
    

      

𝜒𝜒(𝑢𝑢) is the set of initial conditions for trajectories of dynamical system that remain in the bounding set and arrive in the 
target set at the final time when control law 𝑢𝑢 is applied. 

 Find a controller 𝑢𝑢 that maximizes the volume of the BRS, i.e., max 𝜆𝜆(𝜒𝜒(𝑢𝑢)) 𝜆𝜆 𝜒𝜒 𝑢𝑢 = � 𝑑𝑑𝑥𝑥 
𝜒𝜒 𝑢𝑢 

Lebesgue measure 
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• Control-affine system with feedback control 

• We maximize the volume of the BRS using control input 𝑢𝑢. 
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• Control-affine system with feedback control 

• We maximize the volume of the BRS using control input 𝑢𝑢. 

• Occupation measure formulation 

• Instead of working with controlled average occupation measure 𝜇𝜇(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥, 𝑑𝑑𝑢𝑢), we work with average occupation 
measure 𝜇𝜇(𝑑𝑑𝑡𝑡, 𝑑𝑑𝑥𝑥) 

• We decompose   inside the Liouville’s Equation in terms of (nonnegative) measures 

where    is a signed measure. (This will let us to extract the solution) 
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To obtain BRS, we solve measure-LP: 

(1) 

(2) 

(3) 

                                                                        

  

      

    

    

(1): We model BRS with the support of initial measure 𝜇𝜇0 max 𝜇𝜇0(𝑋𝑋) = ∫𝑋𝑋 
𝑑𝑑𝜇𝜇0 max 𝑑𝑑𝑂𝑂𝑙𝑙𝑢𝑢𝑚𝑚𝑒𝑒(BRS) 

(2): Liouville's Equation captures the information of dynamical system. 

(3): To ensures that we are able to extract a bounded control law: 

Slack measure 
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To obtain BRS, we solve measure-LP: 

(1) 

(2) 

(3) 
(4) 

                                                                        

  

  

   

  

(4): To ensures that the optimal value is the Lebesgue measure 

𝑑𝑑𝑂𝑂𝑙𝑙𝑢𝑢𝑚𝑚𝑒𝑒 of BRS in terms of Lebesgue measure: 𝜆𝜆(𝜒𝜒(𝑢𝑢)) 
Slack measure 

We model BRS with the support of initial measure 𝜇𝜇0: 𝜇𝜇0(𝑋𝑋) 

• Supports: 
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• To extract Polynomial 𝑢𝑢 from the moments 

Coefficient of polynomial feedback 

• Direct calculation shows the linear system of equations 
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The dual optimization (SOS optimization)allows us to obtain approximations of the BRS 

                                                                        

      

     𝐵𝐵𝑅𝑅𝑆𝑆 ⊂ is upper bound approximation of the indictor function of the BRS set 
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Dual Optimization 

(1) 

(3) 

(2) 

                                                                        

      

  

       

      

     Interpretation: similar to barrier function based safety verification(Lecture 8, page 29) 

(1): 𝑑𝑑 decrease along trajectories of the system for any valid control input. 

(3): 𝑑𝑑 𝑇𝑇, 𝑥𝑥 ≥ 0 on 𝑋𝑋𝑇𝑇 . 

(1) and (3): {𝑥𝑥: 𝑑𝑑 0, 𝑥𝑥 < 0} is an inner approximation to the set of points that cannot reach the target set. 

• Hence, {𝑥𝑥: 𝑑𝑑 0, 𝑥𝑥 ≥ 0} is an outer approximation to the set of points reach the target set. 

• 𝑅𝑅𝑂𝑂𝐴𝐴 ⊂ 𝑥𝑥: 𝑑𝑑 0, 𝑥𝑥 ≥ 0 = {𝑥𝑥: 𝜔𝜔 𝑥𝑥 − 1 ≥ 0} (2) 
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Example 1: 

Outer approximation of BRS: 

Obtained feedback control input 

Anirudha Majumdar, Ram Vasudevan, Mark M. Tobenkin, and Russ Tedrake. Convex optimization of nonlinear feedback controllers via occupation measures. 
International Journal of Robotics Research (IJRR), 33(9):1209-1230, August 2014 
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Example 2: Vehicle Control 

Polynomial dynamics 

Anirudha Majumdar, Ram Vasudevan, Mark M. Tobenkin, and Russ Tedrake. Convex optimization of nonlinear feedback controllers via occupation measures. 
International Journal of Robotics Research (IJRR), 33(9):1209-1230, August 2014 
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• D. Henrion, M. Ganet-Schoeller, S. Bennani. ”Measures and LMI for space launcher robust control validation”, Proceedings of the IFAC Symposium on
Robust Control Design, Aalborg, Denmark, June 2012.

• D. Henrion ”Optimization on linear matrix inequalities for polynomial systems control”, Lecture notes used for a tutorial course given during the
International Summer School of Automatic Control held at Grenoble, France, in September 2014.

• D. Henrion, J. B. Lasserre, C. Savorgnan, Nonlinear optimal control synthesis via occupation measures, Proc. IEEE Conf. Decision and Control, 2008.

• J. B. Lasserre, D. Henrion, C. Prieur, E. Tr´elat, Nonlinear optimal control via occupation measures and LMI relaxations, SIAM J. Control Opt.,
47(4):1643-1666, 2008.

• POCP - Matlab package for solving polynomial optimal control problems. Can be freely downloaded and used. Developed by Didier Henrion, Jean-
Bernard Lasserre and Carlo Savorgnan. http://homepages.laas.fr/henrion/software/pocp/

• M. Korda, D. Henrion, C. N. Jones ,”Region of attraction approximations for polynomial dynamical systems”, Conference on Geometry and
Algebra of Linear Matrix Inequalities, GeoLMI 2013 , http://homepages.laas.fr/henrion/geolmi13/korda.pdf

• D. Henrion, M. Korda. Convex computation of the region of attraction of polynomial control systems, IEEE Transactions on Automatic Control, Vol. 59, No. 2, 
pp. 297-312, 2014.

• M. Korda, D. Henrion, C. N. Jones. Controller design and region of attraction estimation for nonlinear dynamical systems., Proceedings at the IFAC World 
Congress on Automatic Control, Cape Town, South Africa, August 2014.

• M. Korda, D. Henrion, C. N. Jones. Inner approximations of the region of attraction for polynomial dynamical systems, Proceedings of the IFAC Symposium on 
Nonlinear Control Systems, Toulouse, France, September 2013.

• Anirudha Majumdar, Ram Vasudevan, Mark M. Tobenkin, and Russ Tedrake. Convex optimization of nonlinear feedback controllers via occupation measures.
International Journal of Robotics Research (IJRR), 33(9):1209-1230, August 2014

• Anirudha Majumdar, Ram Vasudevan, Mark M. Tobenkin, and Russ Tedrake. Convex optimization of nonlinear feedback controllers via occupation measures. In
Proceedings of Robotics: Science and Systems (RSS), 2013
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