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In this lecture, 

• Given a probabilistic nonlinear dynamical system 

 We look for state trajectories and control policy to satisfy safety constraints and control objectives, in the presence of 
probabilistic uncertainties. 
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In this lecture, 

• Given a probabilistic nonlinear dynamical system 

 We look for state trajectories and control policy to satisfy safety constraints and control objectives, in the presence of 
probabilistic uncertainties. 

 Topics: 

 Risk Bounded Trajectory Planning in Uncertain Environments 

 Control of Probabilistic Nonlinear Systems 
• Nonlinear State Feedback Control 
• Receding Horizon Control 

 Flow-Tube based  Control of Probabilistic Nonlinear Systems 

 Chance Constrained Backward Reachability Set 

 Continuous-Time Path Planning 
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In this lecture, 

• Given a probabilistic nonlinear dynamical system 

 We look for state trajectories and control policy to satisfy safety constraints and control objectives, in the presence of 
probabilistic uncertainties. 

 Topics: 

 Risk Bounded Trajectory Planning in Uncertain Environments 

 Control of Probabilistic Nonlinear Systems 
• Nonlinear State Feedback Control 
• Receding Horizon Control 

 Flow-Tube based  Control of Probabilistic Nonlinear Systems 

 Chance Constrained Backward Reachability Set 

 Continuous-Time Path Planning 

• We will leverage on the results of “Lecture 7:Nonlinear Chance Constrained and Chance Optimization”. 
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 General Schematics: 

 In general, we can formulate safe control of probabilistic dynamical system as the following optimization problems: 

Chance Constrained Optimization 

Chance Optimization 

Acceptable risk level 

• 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =Remaining safe and achieving the control objectives 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 5 



                                                                        MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 6 

Obstacle(𝝎𝝎𝒐𝒐𝒐𝒐𝑺𝑺) 
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• 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =Remaining safe and reaching the goal 

Chance Optimization 

Obstacle(𝝎𝝎𝒐𝒐𝒐𝒐𝑺𝑺) 

• For state feedback control, we look for the feedback gains. 

Find a sequence of control inputs [𝑢𝑢0, … , 𝑢𝑢𝑁𝑁−1] 



                                                                        

  

 

 
  

  

     

     

Chance Optimization 
Find a sequence of control inputs [𝑢𝑢0, … , 𝑢𝑢𝑁𝑁−1] 

• 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =Remaining safe and reaching the goal 
• For state feedback control, we look for the feedback gains. 

Obstacle(𝝎𝝎𝒐𝒐𝒐𝒐𝑺𝑺) 

Chance Constrained Optimization 
Find a sequence of control inputs [𝑢𝑢0, … , 𝑢𝑢𝑁𝑁−1] 

• 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =Remaining Safe 
• For state feedback control, we look for the feedback gains. 
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Using the results of 
Lecture 7:Nonlinear Chance Constrained and Chance Optimization: 

Moment SDP 

• 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =Remaining safe and reaching the goal 

Chance Optimization 
Find a sequence of control inputs [𝑢𝑢0, … , 𝑢𝑢𝑁𝑁−1] 

• For state feedback control, we look for the feedback gains. 

• 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =Remaining Safe 

Chance Constrained Optimization 
Find a sequence of control inputs [𝑢𝑢0, … , 𝑢𝑢𝑁𝑁−1] 

• For state feedback control, we look for the feedback gains. 

 Semialgebraic set approximation of chance constraints: 

SOS SDP 

Deterministic optimization 
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In this lecture, we mainly focus on particular class of problems as follows: 

 Topics: • Deals with environment uncertainties 
• Identifies risky regions in the environment 

 Risk Bounded Trajectory Planning in Uncertain Environments • Chance constrained formulation 

 Control of Probabilistic Nonlinear Systems 
• Nonlinear State Feedback Control • Chance optimization formulation 
• Receding Horizon Control • Chance constrained formulation 

 Flow-Tube based  Control of Probabilistic Nonlinear Systems • Sequential Chance optimization formulation 

 Chance Constrained Backward Reachability Set • Chance constrained formulation 

• Generates trajectories for the robot 
 Continuous-Time Path Planning • SOS and Chance optimization formulation 
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Topics: 

 Introduction 

 Polynomial Representation of Obstacles and Dynamical Systems 

 Risk Bounded Trajectory Planning in Uncertain Environments 

 Control of Probabilistic Nonlinear Systems 
• Nonlinear State Feedback Control 
• Receding Horizon Control 

 Flow-Tube based  Control of Probabilistic Nonlinear Systems 

 Chance Constrained Backward Reachability Set 

 Continuous-Time Path Planning 
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 Polynomial Representation of Obstacles 
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Problem Statement: 

 Given a set of 𝑁𝑁 points in 𝑛𝑛 dimensional space: 

 Find the smallest semialgebraic set that contains the given data 

Polynomial level set 
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Polynomial of order 2 Polynomial of order 5 Polynomial of order 9 
𝑥𝑥𝑖𝑖 
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Applications 

1) Geometrical representation of objects form point cloud data (sensory data) 
2) Uncertainty set constriction from the samples 
3) Data clustering 

Fabrizio Dabbene and Didier Henrion, “Set approximation via minimum-volume polynomial sublevel sets”, European Control Conference (ECC), pp 1114-1119, 2013 

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/ 

© Robotics: Science and Systems, 2017. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

• 
• F. Dabbene, D. Henrion, C. M.Lagoa “Simple approximations of semialgebraic sets and their applications to control”, Automatica Volume 78, pp. 110-118, 2017. 
• A. A. Ahmadi, G. Hall, A. Makadia, and V. Sindhwani, “Sum of Squares Polynomials and Geometry of 3D Environments” Robotics: Science and Systems, 2017. 

https://ocw.mit.edu/help/faq-fair-use/
https://ocw.mit.edu/help/faq-fair-use/


 Given a set of 𝑁𝑁 points in 𝑛𝑛 dimensional space: 

 Find the smallest semialgebraic set that contains the given data 

Where, is the volume of the set. 
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 Given a set of 𝑁𝑁 points in 𝑛𝑛 dimensional space: 

 Find the smallest semialgebraic set that contains the given data 

Where, is the volume of the set. 

Indicator function based representation: 

 Volume of the set in terms of the indicator function: 

 Set described by its indicator function: 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 16                                                                         

   

  

                                 

      

    

 



 Given a set of 𝑁𝑁 points in 𝑛𝑛 dimensional space: 

 Find the smallest semialgebraic set that contains the given data 

Where, is the volume of the set. 

Indicator function based representation: 

 Volume of the set in terms of the indicator function: 

 Set described by its indicator function: 

 Upper bound Polynomial approximation of the indictor function: 
Indictor function 
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 Given a set of 𝑁𝑁 points in 𝑛𝑛 dimensional space: 
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Linear 
LMI 

Linear 

Semialgebraic set representation of data: 
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https://github.com/jasour/rarnop19/tree/master/Lecture11_Probabilistic_Nonlinear_Control/ 
Data_Polynomial_Representation 

https://github.com/jasour/rarnop19/tree/master/Lecture11_Probabilistic_Nonlinear_Control/Data_Polynomial_Representation


                                                                        

         • F. Dabbene, D. Henrion, C. M.Lagoa “Simple approximations of semialgebraic sets and their applications to control”, Automatica Volume 78, pp. 110-118, 2017. 
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         • F. Dabbene, D. Henrion, C. M.Lagoa “Simple approximations of semialgebraic sets and their applications to control”, Automatica Volume 78, pp. 110-118, 2017. 
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Convex Set Representation 

Set representation of data: Level sets of polynomial 

 Second order convexity condition: Hessian matrix 

Polynomial matrix 
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Convex Set Representation 

Set representation of data: Level sets of polynomial 

 Second order convexity condition: Hessian matrix 

 From the definition of the PSD matrix mial maPolyno trix 

Polynomial: 
SOS Polynomial in 𝑥𝑥 and 𝑦𝑦 

matrix vector 

SOS-Convexity Condition 
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    From the definition of the PSD matrix



  

               

       Level sets of SOS polynomials of increasing degree Level sets of SOS-Convex polynomials of increasing degree 

© Robotics: Science and Systems, 2017. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

• A. A. Ahmadi, G. Hall, A. Makadia, and V. Sindhwani, “Sum of Squares Polynomials and Geometry of 3D Environments” Robotics: Science and Systems, 2017. 
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 Polynomial Representation of Dynamical Systems 
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1) Taylor expansion 

Taylor expand the dynamics about the point (equilibrium point, way-point). 

 Taylor expansion of function  at point 𝑎𝑎: 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 26 



  

 

    

   

   

    

              

1) Taylor expansion 

Taylor expand the dynamics about the point (equilibrium point, way-point). 

 Taylor expansion of function  at point 𝑎𝑎: 

Example: to describe motion we need “Trigonometric functions”. 

• Polynomial dynamics: Taylor expansion of trigonometric functions to degree 3 at point 𝜓𝜓 = 0 

A. Ahmadi, A. Majumdary, “Some applications of polynomial optimization in operations research and real-time decision making”, Optimization Letters, Volume 10, Issue 4, pp 709–729, 2016. 
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Trigonometric functions - Taylor expansion of order 𝑛𝑛 

𝑛𝑛 = 1 

𝑛𝑛 = 2 

𝑛𝑛 = 3 

𝑛𝑛 = 4𝑛𝑛 = 1 

𝑛𝑛 = 2 

𝑛𝑛 = 3 

𝑛𝑛 = 4 

𝑛𝑛 = 4 

𝑛𝑛 = 3 

𝑛𝑛 = 1 

𝑛𝑛 = 2 

𝑛𝑛 = 3 

𝑛𝑛 = 4 

𝑛𝑛 = 1 

𝑛𝑛 = 2 

𝑛𝑛 = 2 

𝑛𝑛 = 1 

𝑛𝑛 = 2 

𝑛𝑛 = 

𝑛𝑛 = 1 

𝑛𝑛 = 3 
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   Trigonometric functions - Taylor expansion of order 𝑛𝑛 

𝑛𝑛 = 1 

𝑛𝑛 = 2 

𝑛𝑛 = 3 

𝑛𝑛 = 4 

𝑛𝑛 = 1 

𝑛𝑛 = 2 

𝑛𝑛 = 3 

𝑛𝑛 = 4 

𝑛𝑛 = 1 

𝑛𝑛 = 2 

𝑛𝑛 = 3 
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  2) New state variables 

Example 1: 

States: 

Dynamics: 

Define: 

States: 

Polynomial Dynamics: 

Chapter 10: Underactuated Robotics, Algorithms for Walking, Running, Swimming, Flying, and Manipulation, Russ Tedrake. 
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  3) Change of Coordinates 

Dubin’s Car Model: 

Coordinate and input transform 

Polynomial model: 

• D. DeVon, T. Bretl, “Kinematic and dynamic control of a wheeled mobile robot”, IEEE International Conference on Intelligent Robots and Systems, 2007. 
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Topics: 

 Introduction 

 Polynomial Representation of Obstacles and Dynamical Systems 

 Risk Bounded Trajectory Planning in Uncertain Environments 

 Control of Probabilistic Nonlinear Systems 
• Nonlinear State Feedback Control 
• Receding Horizon Control 

 Flow-Tube based  Control of Probabilistic Nonlinear Systems 

 Chance Constrained Backward Reachability Set 

 Continuous-Time Path Planning 
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Risk Bounded Trajectory Planning in Uncertain Environments 

Risk> 0.9 

𝟎𝟎. 𝟏𝟏 

𝟎𝟎. 𝟑𝟑 

𝟎𝟎. 𝟕𝟕 

𝟎𝟎. 𝟗𝟗 

𝟎𝟎. 𝟓𝟓 

𝑥𝑥0 

𝑥𝑥𝑇𝑇 
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Goal: Risk Bounded Trajectory Planning in presence of perception uncertainties 

Perception Uncertainties: 
Probabilistic uncertainties in location, size, and geometry of obstacles 

Risk: Probability of collision of robot with obstacles in presence of probabilistic uncertainties. 

Uncertain 
Obstacle 

Risk Contours Map 

Risk≤ 0.1 

Risk> 𝟎𝟎. 𝟗𝟗 
𝟎𝟎. 𝟕𝟕 

𝟎𝟎. 𝟓𝟓 

𝟎𝟎. 𝟑𝟑 

𝟎𝟎. 𝟏𝟏 

𝟎𝟎. 𝟗𝟗 

Risk≤ 0.3 

Risk≤ 0.7 

Risk≤ 0.9 

Risk≤ 0.5 

Ordinary Map 

Free Region 

Obstacle 
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𝚫𝚫-risk contour: All points whose "risk" is less than or equal to 𝚫𝚫 

Risk Contours Map 
𝚫𝚫-risk contours :   Risk≤ 𝟎𝟎. 𝟏𝟏 

𝟎𝟎. 𝟏𝟏 

𝟎𝟎. 𝟑𝟑 :   Risk≤ 𝟎𝟎. 𝟑𝟑 
𝟎𝟎. 𝟏𝟏 

𝟎𝟎. 𝟓𝟓 :   Risk≤ 𝟎𝟎. 𝟓𝟓 
𝟎𝟎. 𝟑𝟑 

𝟎𝟎. 𝟕𝟕 𝟎𝟎. 𝟓𝟓 :   Risk≤ 𝟎𝟎. 𝟕𝟕 Risk> 𝟎𝟎. 𝟗𝟗 
𝟎𝟎. 𝟕𝟕 

𝟎𝟎. 𝟗𝟗 :   Risk≤ 𝟎𝟎. 𝟗𝟗 
𝟎𝟎. 𝟗𝟗 

Risk Contours Map: Collection of 𝚫𝚫-risk contours Risk levels: Δ𝑖𝑖 ∈ [0,1] 



Illustrative Example: 
Circle shaped obstacle with probabilistic size 

                                                                        

    

0.3 0.4 
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Illustrative Example: 
Circle shaped obstacle with probabilistic size 

                                                                        

    

0.3 0.4 

All points whose "risk" is less than or equal to 𝚫𝚫 
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Illustrative Example: 
Circle shaped obstacle with probabilistic size 

0.3 0.4 

0.35 

All points whose "risk" is less than or equal to 𝚫𝚫 

All points whose "risk" is less than or equal to 𝚫𝚫 
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Application:  Risk Bounded Motion Planning 

Δ 

Δ 

𝑃𝑃(𝑡𝑡) 

𝑥𝑥0 

𝑥𝑥𝑇𝑇 
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Find trajectory 𝑃𝑃(𝑡𝑡) such that: 

i) Boundary Conditions: 

ii) Chance Constraints: 

Time Uncertain Obstacle Acceptable Risk Level 

Deterministic Constraints in terms of Δ-risk contours: 

Δ-risk contour of obstacle 𝑖𝑖 
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Risk Contours Construction 
𝚫𝚫-risk contour: All points whose "risk" is less than or equal to 𝚫𝚫 

Chance Constrained Set 

Main Idea: Polynomial approximation of the probabilistic constraint. 
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Risk Contours Construction 
𝚫𝚫-risk contour: All points whose "risk" is less than or equal to 𝚫𝚫 

Chance Constrained Set 

Main Idea: Polynomial approximation of the probabilistic constraint. 

Inner approximation 

𝚫𝚫 Sublevel set of polynomial 

𝚫𝚫 

𝑥𝑥1 

𝑥𝑥2 

𝑥𝑥2𝑥𝑥1 

𝚫𝚫 

:  Risk≤ Δ 

1-𝚫𝚫 

𝑥𝑥2𝑥𝑥1 

1-𝚫𝚫 

𝑥𝑥1 

𝑥𝑥2 :  Risk≤ Δ 
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Outer approximation 

(𝟏𝟏 − 𝚫𝚫) Superlevel set of polynomial 
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Outer approximation: 

𝚫𝚫-risk contour: All points whose "risk" is less than or equal to 𝚫𝚫 
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Outer approximation 

Δ-risk contour: 

(𝟏𝟏 − 𝚫𝚫) Superlevel set of polynomial Outer approximation: 



                                                                        

 

Outer approximation: 

Δ-risk contour: 

Sets: Complement set: 
State space uncertainty space 

Complement set: 
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Outer approximation: 

Δ-risk contour: 

Sets: Complement set: 
State space uncertainty space 

Complement set: 

 To obtain risk contour set, we need to find polynomial approximation of indicator function of set . 
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Outer approximation : 

For any 𝑥𝑥∗ ∈ 𝜒𝜒, polynomial  is an upper bound on the probability that 𝑥𝑥∗ ∈ 𝜒𝜒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
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Inner approximation: 

Δ-risk contour: 

• In the previous slide, we obtained the outer approximation of the set 
• We can apply the same methodology to obtain the outer approximation of the set 
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Inner approximation: 

Δ-risk contour: 

• In the previous slide, we obtained the outer approximation of the set 
• We can apply the same methodology to obtain the outer approximation of the set 

Inner approximation Outer approximation 
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Inner approximation: 

Δ-risk contour: 

• In the previous slide, we obtained the outer approximation of the set 
• We can apply the same methodology to obtain the outer approximation of the set 

Inner approximation Outer approximation 

𝚫𝚫 Sublevel set of polynomial 
Inner approximation: 
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Outer approximation: 

Sets: 

Δ-risk contour: 
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Outer approximation: 

Sets: 

Δ-risk contour: 

Outer approximation of the set 
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Outer approximation: 

Sets: 

Δ-risk contour: 

For any 𝑥𝑥∗ ∈ 𝜒𝜒, polynomial  is an upper bound on the probability that 𝑥𝑥∗ ∈ 𝜒𝜒𝑜𝑜𝑜𝑜𝑠𝑠 

Outer approximation of the set 

Outer approximation of  the set 

Inner approximation of the set 
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Outer approximation: 

Sets: 

Δ-risk contour: 

For any 𝑥𝑥∗ ∈ 𝜒𝜒, polynomial  is an upper bound on the probability that 𝑥𝑥∗ ∈ 𝜒𝜒𝑜𝑜𝑜𝑜𝑠𝑠 

Outer approximation of the set 

Outer approximation of  the set 

Inner approximation of the set 
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Inner approximation : 
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Uncertain Obstacles 

𝚫𝚫-risk contour 

Inner approximation : 

• Define set 

• SOS Program ( ≥→ 𝑆𝑆𝑆𝑆𝑆𝑆 ) 

• Polynomial 

Inner approximation : 

Outer approximation : 

• Define set 

• SOS Program ( ≥→ 𝑆𝑆𝑆𝑆𝑆𝑆 ) 

• Polynomial 

Outer approximation : 

• A. Jasour, Brian C. Williams, "Risk Contours Map for Risk Bounded Motion Planning under Perception Uncertainties", Robotics: Science and System (RSS), Germany, 2019. 
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Example 1: Uncertain Obstacle 

𝑥𝑥1 

𝑥𝑥2 

𝜔𝜔 
𝜔𝜔~Uniform [0.3,0.4] 

Outer Approximation of 𝚫𝚫-risk contour 

 Polynomial order 𝑑𝑑 = 20 Risk Contours Map 

1-𝚫𝚫 

• Outer approximation: Outside of the dashed line 
• True 𝛥𝛥-risk contour: green set 
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Example 1: Uncertain Obstacle 

𝑥𝑥1 

𝑥𝑥2 

𝜔𝜔 
𝜔𝜔~Uniform [0.3,0.4] 

Inner Approximation of 𝚫𝚫-risk contour 

 Polynomial order 𝑑𝑑 = 20 Risk Contours Map 

𝚫𝚫 

• Inner approximation: Outside of the dashed line 
• True 𝛥𝛥-risk contour: green set 
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𝝎𝝎 = 𝟎𝟎

𝝎𝝎 = 𝟏𝟏

Risk Bounded Trajectory Risk≤ 0.0155

Example 2: Uncertain Unsafe Region 

(1.1,5) 𝜔𝜔 ∈ [0 1]~Beta 
Uncertain Obstacle 

https://github.com/jasour/rarnop19/blob/master/Lecture11_Probabilistic_Nonlinear_Control/Risk_Contours_Map/Example_1_RiskContour_Inner.m 

Inner Approximation of 𝚫𝚫-risk contour Unsafe Region 

𝚫𝚫 

• Inner approximation: Outside of the dashed line 
• True 𝛥𝛥-risk contour: green set 
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Example 2: Uncertain Unsafe Region 

𝜔𝜔 ∈ [0 1]~Beta (1.1,5) 
Uncertain Obstacle 

Robust Planning: Risk Bounded Planning: 
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Uncertain Obstacle 

𝝎𝝎 = 𝟎𝟎 

𝝎𝝎 = 𝟏𝟏 

Unsafe Region 

 

                                                                        

𝝎𝝎 = 𝟎𝟎

𝝎𝝎 = 𝟏𝟏

56 Risk≤ 0.01



                                                                        

 

 

Example 3: Uncertain Safe Region Between Moving Obstacles 

𝜔𝜔 ∈ [0 1]~ Triangular probability 

Moving Obstacles (red) Safe region(blue) 
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𝜔𝜔 = 1 

𝜔𝜔 = 0 



                                                                        

 

 

   

   

𝚫𝚫-risk contour 

Outer Approximation of 𝚫𝚫-risk contour 

• Inside of the contours, risk is less or equal Δ 

Inner Approximation of 𝚫𝚫-risk contour 

• Inside of the contours, risk is less or equal Δ 
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Example 4: Random Crowd Pattern 

Risk> 0.5 Risk> 0.95 

𝜔𝜔 ∈ [0 1]~ (1.1,1.2) Beta 

𝚫𝚫=0.5 

 Polynomial order 𝑑𝑑 = 24 

Risk≥ 0.5 Risk≥ 0.95 

(1) (2) 

𝚫𝚫=0.95 

• Outer approximation of the set of all points whose probability of collision is greater than Δ. 
• Probability of observing patterns 1 and 2  are greater or equal to 0.5 and 0.95, respectively. 
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Topics: 

 Introduction 

 Polynomial Representation of Obstacles and Dynamical Systems 

 Risk Bounded Trajectory Planning in Uncertain Environments 

 Control of Probabilistic Nonlinear Systems 
• Nonlinear State Feedback Control 
• Receding Horizon Control 

 Flow-Tube based  Control of Probabilistic Nonlinear Systems 

 Chance Constrained Backward Reachability Set 

 Continuous-Time Path Planning 
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Control of Probabilistic Nonlinear Systems 
Chance Optimization for Nonlinear State Feedback 
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Nonlinear Probabilistic Systems 

• Uncertain Dynamical Model 

States 
Control Inputs 

Probabilistic uncertainty ∼ 𝑝𝑝𝑝𝑝(𝜔𝜔𝑘𝑘) 

• Uncertain Safety Constraint: 

e.g., uncertain safe set, uncertain obstacle set, state constraints 

• Final state Constraints 

• Source of uncertainties: 𝑥𝑥0∼ 𝑝𝑝𝑝𝑝 𝑥𝑥0 , 𝜔𝜔𝑘𝑘 ∼ 𝑝𝑝𝑝𝑝 𝜔𝜔𝑘𝑘 , 𝜔𝜔𝑔𝑔 ∼ 𝑝𝑝𝑝𝑝(𝜔𝜔𝑔𝑔) 
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• Design a closed-loop controller to: 

i) Drive the robot to the goal region 
ii) Satisfy safety constraints (e.g. avoid the obstacles ) 

in the presence of system and environment uncertainties. 

• Closed-loop controller in the form of “Polynomial State Feedback”, i.e., 

Feedback gains 

Chance Optimization 

Ashkan Jasour, C. Lagoa, ”Convex Relaxations of a Probabilistically Robust Control Design Problem”, 52st IEEE Conference on Decision and Control, Florence, Italy, 2013 
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Example 1: 

• Dynamical system: 

• Uncertainties: 

• Target set: 𝑇𝑇 = 2 

• Feedback Control: 

• Goal: 

• Chance Optimization: 
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• Dynamical system: • Feedback Control: 

• By recursion: 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 65 



                                                                        

     

• Dynamical system: • Feedback Control: 

• By recursion: 

• 𝑥𝑥1 2 , 𝑥𝑥2(2) in terms of uncertain parameters 𝑥𝑥1 0 , 𝑥𝑥2 0 , 𝜔𝜔 0 , 𝜔𝜔 1 and design parameters 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3: 
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• Dynamical system: • Feedback Control: 

• By recursion: 

• 𝑥𝑥1 2 , 𝑥𝑥2(2) in terms of uncertain parameters 𝑥𝑥1 0 , 𝑥𝑥2 0 , 𝜔𝜔 0 , 𝜔𝜔 1 and design parameters 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3: 
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• Chance Optimization: 

} 

• Convex Chance Optimization in measures: 

• Moment SDP with relaxation order 6: 

Ashkan Jasour, C. Lagoa, ”Convex Relaxations of a Probabilistically Robust Control Design Problem”, 52st IEEE Conference on Decision and Control, Florence, Italy, 2013 
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Example 2: • Dynamical system: 

• Uncertainties: 

• Target set: 𝑇𝑇 = 3 

• Obstacle: 

• Feedback Control: 

• Goal: 

• Chance Optimization: 
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• Goal: 

• Chance Optimization: 

• By recursion, we describe states 𝑥𝑥(1), 𝑥𝑥(2), and 𝑥𝑥(3) in terms of uncertain parameters 𝑥𝑥1 0 , 𝑥𝑥2 0 , 𝑥𝑥3 0 , 𝛿𝛿 and 
design parameters 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3. 
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• Goal: 

• Chance Optimization: 

• By recursion, we describe states 𝑥𝑥(1), 𝑥𝑥(2), and 𝑥𝑥(3) in terms of uncertain parameters 𝑥𝑥1 0 , 𝑥𝑥2 0 , 𝑥𝑥3 0 , 𝛿𝛿 and 
design parameters 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3. 

• Solution obtained by Moment SDP with relaxation order 8: 
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• Goal: 

• Chance Optimization: 

• By recursion, we describe states 𝑥𝑥(1), 𝑥𝑥(2), and 𝑥𝑥(3) in terms of uncertain parameters 𝑥𝑥1 0 , 𝑥𝑥2 0 , 𝑥𝑥3 0 , 𝛿𝛿 and 
design parameters 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3. 

• Solution obtained by Moment SDP with relaxation order 8: 

• To improve the estimation of the probability of achieving control goals for the designed controller 
1) We can solve moment SDP provided in the lecture 10 (risk estimation)    or    2) Monte-Carlo 

• Estimated probability of reaching the target set is 0.95 and estimated probability remaining safe over planning horizon is 1. 
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Chance Optimization 

 In the chance optimization based controller design, size of the SDP increases as the planning horizon increase. 
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Chance Optimization 

 In the chance optimization based controller design, size of the SDP increases as the planning horizon increase. 

• As 𝑇𝑇 increases, we need higher order polynomials to describe the states (by recursion) in terms of uncertain and 
design parameters. Hence, we need higher relaxation order to solve moment SDP. 
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Chance Optimization 

 In the chance optimization based controller design, size of the SDP increases as the planning horizon increase. 

• As 𝑇𝑇 increases, we need higher order polynomials to describe the states (by recursion) in terms of uncertain and 
design parameters. Hence, we need higher relaxation order to solve moment SDP. 

 To address problems with long planning horizons: 
1) Receding Horizon Formulation    2) Flow-Tube based control 
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Control of Probabilistic Nonlinear Systems 
Chance Constrained Receding Horizon Control 
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Chance Constrained Receding Horizon Control 

• Uncertain Dynamical Model 

• Target Set: 

• Source of uncertainties: 𝑥𝑥0∼ 𝑝𝑝𝑝𝑝 𝑥𝑥0 , 𝜔𝜔𝑘𝑘 ∼ 𝑝𝑝𝑝𝑝(𝜔𝜔𝑘𝑘) 

• Control Constraints: 

Control Goals: 
1) Reach the target set with high probability 
2) Minimize the expected value of the given cost function in terms of states and control input, i.e. 
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 Chance Constrained Receding Horizon Control 

• Uncertain Dynamical Model 

• Target Set: 

• Source of uncertainties: 𝑥𝑥0∼ 𝑝𝑝𝑝𝑝 𝑥𝑥0 , 𝜔𝜔𝑘𝑘 ∼ 𝑝𝑝𝑝𝑝(𝜔𝜔𝑘𝑘) 

• Control Constraints: 

Control Goals: 
1) Reach the target set with high probability 
2) Minimize the expected value of the given cost function in terms of states and control input, i.e. 

 In the chance constrained receding horizon formulation, at each time step, we look for the control input such that states 
gets closer to the target set with some non-zero probability. 
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• Given the target set                                                                       , polynomial 𝑝𝑝𝑇𝑇(𝑥𝑥) represent the distance to the 
target set. 

• 𝑝𝑝𝑇𝑇 (𝑥𝑥) decreases as the states x gets closer to the target set. 
𝒑𝒑𝑻𝑻 𝒙𝒙 ≥ 𝟎𝟎 

𝒑𝒑𝑻𝑻 𝒙𝒙 ≤ 𝟎𝟎 

• States get closer to the target set if 

Where, 0 < 𝛼𝛼 < 1 
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Chance Constrained Optimization at time k over horizon h: 

Where, 0 < 𝛼𝛼, 𝛽𝛽 < 1 0 ≤ 𝛽𝛽𝑝𝑝𝑇𝑇 (𝑥𝑥) < 1 for all 𝑥𝑥 ∈ Χ (state space) 
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Chance Constrained Optimization at time k over horizon h: 

Where, 0 < 𝛼𝛼, 𝛽𝛽 < 1 0 ≤ 𝛽𝛽𝑝𝑝𝑇𝑇 (𝑥𝑥) < 1 for all 𝑥𝑥 ∈ Χ (state space) 
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• Given the target set                                                                       , polynomial 𝑝𝑝𝑇𝑇(𝑥𝑥) represent the distance to the 
target set. 

• 𝑝𝑝𝑇𝑇 (𝑥𝑥) decreases as the states x gets closer to the target set. 
𝒑𝒑𝑻𝑻 𝒙𝒙 ≤ 𝟎𝟎 

𝒑𝒑𝑻𝑻 𝒙𝒙 ≥ 𝟎𝟎 

• With some probability states at next time step gets closer to the target set 

• This probability increases as states gets closer to the target set 



                                                                        

   

 

            

Chance Constrained Optimization at time k over horizon h: 

Where, 0 < 𝛼𝛼, 𝛽𝛽 < 1 0 ≤ 𝛽𝛽𝑝𝑝𝑇𝑇 (𝑥𝑥) < 1 for all 𝑥𝑥 ∈ Χ (state space) 

• In this formulation, chance constraints only depends on the states at next time step. Hence, results in smaller moment SDP. 
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• Target Set: 

• Chance Constraint: 
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• Target Set: 

• Chance Constraint: 

Theorem: Given an initial state 𝑥𝑥0 and 𝜖𝜖 > 0 there exist a time step 𝑘𝑘� and lower bound probability 𝑃𝑃� such that 

where 

Theorem 1, Ashkan Jasour, Constantino Lagoa, "Convex Chance Constrained Model Predictive Control", IEEE 55th Conference on Decision and Control (CDC), 2016, Las Vegas, USA 
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• Target Set: 

• Chance Constraint: 

Theorem: Given an initial state 𝑥𝑥0 and 𝜖𝜖 > 0 there exist a time step 𝑘𝑘� and lower bound probability 𝑃𝑃� such that 

where 

• The probability lower bound is a convergent product and converges to a non-zero constant. 

Example: (𝛼𝛼, 𝛽𝛽) = (0.8,0.05) 𝑃𝑃 → 0.8169 �� 𝑘𝑘 ≥ 36 

• The lower bound probability is a conservative bound and the actual probability of the reaching the set is greater than 𝑃𝑃�. 
Theorem 1, Ashkan Jasour, Constantino Lagoa, "Convex Chance Constrained Model Predictive Control", IEEE 55th Conference on Decision and Control (CDC), 2016, Las Vegas, USA 
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 • Chance Constrained 
Optimization: 

Let: 
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• Chance Constrained 
Optimization: 

Let: 

• By recursion, we describe states 𝑥𝑥𝑘𝑘 in terms of uncertain Parameters and control input. Hence 

replaced by the moments 𝑦𝑦𝑠𝑠) 
Polynomial in terms of 𝑢𝑢 
(𝐸𝐸 𝜔𝜔𝑠𝑠 
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• Chance Constrained 
Optimization: 

Let: 

• By recursion, we describe states 𝑥𝑥𝑘𝑘 in terms of uncertain Parameters and control input. Hence 

replaced by the moments 𝑦𝑦𝑠𝑠) 

• Chance Constrained 
Optimization: 

Polynomial in terms of 𝑢𝑢 
(𝐸𝐸 𝜔𝜔𝑠𝑠 
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• Chance Constrained 
Optimization: 

• Convex Chance Optimization in measures: 

Using the measure based deterministic and chance optimization: 

 Moment representation to obtain Moment SDP. 
Theorem 2, Ashkan Jasour, Constantino Lagoa, "Convex Chance Constrained Model Predictive Control", IEEE 55th Conference on Decision and Control (CDC), 2016, Las Vegas, USA 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 89 



                                                                        

             

   

 

    
     

 Moment representation to obtain Moment SDP. 

Receding Horizon Algorithm: 

 𝑘𝑘 = 0 
 Solve the moment SDP over the horizon ℎ to obtain 𝑢𝑢 𝑖𝑖 , 𝑖𝑖 = 𝑘𝑘, . . , 𝑘𝑘 + ℎ 
 Apply the obtained 𝑢𝑢(𝑘𝑘) to the system to obtain 𝑥𝑥 𝑘𝑘 + 1 . 
 𝑘𝑘 ← 𝑘𝑘 + 1 

Ashkan Jasour, Constantino Lagoa, "Convex Chance Constrained Model Predictive Control", IEEE 55th Conference on Decision and Control (CDC), 2016, Las Vegas, USA 
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Example: • Dynamical system: 

• Uncertainties: 

• Target set: 

• Receding horizon: ℎ = 3 

• (𝛼𝛼, 𝛽𝛽) = (0.9,0.2027) 

• 𝑥𝑥0 = (1,1,1) 
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The obtained control input at each time 𝑘𝑘 for the initial condition 𝑥𝑥0 = (1,1,1) 

𝑢𝑢𝑘𝑘 = [−0.227, −0.219, −0.325, −0.196, −0.215, −0.605, 0.550] 

Where results in the trajectory of 

𝑥𝑥1 𝑘𝑘 = [1, 1, 1, 0.752, 0.892,0.417, −0.101, 0.0487] 

𝑥𝑥2 𝑘𝑘 = [1,1,0.752,0.892,0.417, −0.101,0.0487,0.041] 

𝑥𝑥3 𝑘𝑘 = [1, 0.752, 0.892, 0.554, −0.113, 0.116, −0.410, 0.171] 

Hence, in 7 steps the trajectory of the system under the control reaches the desired set. 
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 Polynomial Representation of Obstacles and Dynamical Systems 

 Risk Bounded Trajectory Planning in Uncertain Environments 

 Control of Probabilistic Nonlinear Systems 
• Nonlinear State Feedback Control 
• Receding Horizon Control 

 Flow-Tube based  Control of Probabilistic Nonlinear Systems 

 Chance Constrained Backward Reachability Set 

 Continuous-Time Path Planning 
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Flow-Tube Based Control Of Probabilistic Nonlinear Systems 

Flow-Tube 

Space X 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 94 



 

  
  

   

                                                                        95

2) Flow-Tube Based Control Of Probabilistic Nonlinear Systems 

Goal Goal 

Planned Trajectory from initial pose Actual trajectory due to disturbances. Tube around the planned trajectory 
to the goal pose. 
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2) Flow-Tube Based Control Of Probabilistic Nonlinear Systems 

Goal Goal 

Goal: design a nonlinear time-varying state feedback such that 
states of the system follow the nominal trajectory and remain 
in its neighborhood (flow-tube), despite all uncertainties. 

Planned Trajectory from initial pose Actual trajectory due to disturbances. Tube around the planned trajectory 
to the goal pose. 
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• As long as the tube is obstacle free, safety is assured. 

“Robust Tracking with Model Mismatch for Fast and Safe Planning: an SOS Optimization Approach’”, Sumeet Singh, Mo Chen, Sylvia L. Herbert, Claire J. Tomlin, 
Marco Pavone. 

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/ 

“Robust Online Motion Planning via Contraction Theory and Convex Optimization”, Sumeet Singh, Anirudha Majumdar, Jean-Jacques Slotine, Marco Pavone 

“Funnel libraries for real-time robust feedback motion planning”, Anirudha Majumdar, Russ Tedrake 
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1) Design a trajectory and the associated tube for different steps of the mission (Planning Step), 
2) Stick to the plan despite all uncertainties (follow and remain inside the tube) 
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Space X 
© SpaceX. All rights reserved. This content is excluded 
from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/ 
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Flow-Tube Based Control Of Probabilistic Nonlinear Systems 

𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘)
Continuous State space model 

states inputs Uncertainty ~ p(𝜔𝜔𝑘𝑘):probability distribution 

Nominal Trajectory 𝑥𝑥∗ = {𝑥𝑥∗ 𝑘𝑘 , 𝑘𝑘 = 1, … , 𝑇𝑇} 𝑢𝑢∗ = {𝑢𝑢∗ 𝑘𝑘 , 𝑘𝑘 = 0, … , 𝑇𝑇 − 1} 
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Flow-Tube Based Control Of Probabilistic Nonlinear Systems 

𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘)
Continuous State space model 

states inputs Uncertainty ~ p(𝜔𝜔𝑘𝑘):probability distribution 

Nominal Trajectory 𝑥𝑥∗ = {𝑥𝑥∗ 𝑘𝑘 , 𝑘𝑘 = 1, … , 𝑇𝑇} 𝑢𝑢∗ = {𝑢𝑢∗ 𝑘𝑘 , 𝑘𝑘 = 0, … , 𝑇𝑇 − 1} 

Flow-tube (        ) : a neighborhood around the nominal trajectory 𝑥𝑥∗ 

Goal 

𝑥𝑥∗ 

𝑥𝑥∗(𝑘𝑘) 

Example: 

Flow-tube at time k 

polynomial Flow-tube at time k 
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Time-Varying Feedback Controller: Goal 

𝑥𝑥∗ 

𝑥𝑥∗(𝑘𝑘)
Flow-tube at time k 

Flow-tube (  ) 

Goal: design a nonlinear time-varying state feedback such that states of the system follow the 
nominal trajectory and remain in the given flow-tube, despite all uncertainties. 
MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 101 



 

        

   
 

 

  

     
     

                                                                        102

Time-Varying Feedback Controller: 

polynomial state feedback control Nominal control input 
in error state 

e.g., 

Goal 

𝑥𝑥∗ 

𝑥𝑥∗(𝑘𝑘)
Flow-tube at time k 

Flow-tube (  ) 

Coefficients of polynomial powers of polynomial 

Goal: design a nonlinear time-varying state feedback such that states of the system follow the 
nominal trajectory and remain in the given flow-tube, despite all uncertainties. 
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Chance Optimization: Find design parameters to 𝑚𝑚𝑎𝑎𝑥𝑥 𝑃𝑃𝑝𝑝𝑃𝑃𝑏𝑏(𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

• Success: states of the system follow the nominal trajectory and remain in the given flow-tube. 

• Design parameters: Parameters of nonlinear time-varying state feedback i.e., 
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Feedback gains 

Polynomial state feedback control

Uncertain dynamical system 

Polynomial state feedback control 

Control constraints 

Feedback gain constraints 

Probability distributions 
of uncertainties 

Planning horizon 

Chance Optimization: 

Probability that states of the system follow 
the nominal trajectory and remain in the 
given flow-tube. 

Goal 

𝑥𝑥∗ 

𝑥𝑥∗(𝑘𝑘) 
Flow-tube at time k 

Flow-tube (  ) 
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Chance Optimization: Find design parameters to 𝑚𝑚𝑎𝑎𝑥𝑥 𝑃𝑃𝑝𝑝𝑃𝑃𝑏𝑏(𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

• Success: states of the system follow the nominal trajectory and remain in the given flow-tube. 

• Design parameters: Parameters of nonlinear time-varying state feedback i.e., 

• Chance optimization formulation for long planning horizons 𝑇𝑇, result in a large moment SDP 
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Chance Optimization: Find design parameters to 𝑚𝑚𝑎𝑎𝑥𝑥 𝑃𝑃𝑝𝑝𝑃𝑃𝑏𝑏(𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

• Success: states of the system follow the nominal trajectory and remain in the given flow-tube. 

• Design parameters: Parameters of nonlinear time-varying state feedback i.e., 

Sequential Chance Optimization: 
• Break the original chance optimization into smaller chance optimization problems. 

• Design parameters: Parameters of nonlinear time-varying state feedback at time 𝑘𝑘, 
i.e., 

• Success: 

For 𝑘𝑘 = 0 to 𝑇𝑇 solve following chance optimization: 

Smaller SDP Long Planning Horizon 𝑇𝑇 
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Sequential Chance Optimization: 

 At 𝑘𝑘 = 0, given: 
𝒙𝒙∗(𝟏𝟏) 

𝑥𝑥0~𝜇𝜇𝑥𝑥0 

Find parameters of 

To 

𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘), {𝑥𝑥∗ 1 , 𝑢𝑢∗(1)}, 

𝑥𝑥0~𝜇𝜇𝑥𝑥0 , 𝜔𝜔0~𝜇𝜇𝜔𝜔0 
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Sequential Chance Optimization: 

 At 𝑘𝑘 = 0, given: 

𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘), {𝑥𝑥∗ 1 , 𝑢𝑢∗(1)}, 

𝑥𝑥0~𝜇𝜇𝑥𝑥0 , 𝜔𝜔0~𝜇𝜇𝜔𝜔0 

𝒙𝒙∗(𝟏𝟏) 

𝑥𝑥0~𝜇𝜇𝑥𝑥0 

Find parameters of 

To 

 At 𝑘𝑘 = 1, given: 

𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘), {𝑥𝑥∗ 2 , 𝑢𝑢∗(2)}, 

𝑥𝑥1~𝜇𝜇𝑥𝑥1 , 𝜔𝜔1~𝜇𝜇𝜔𝜔1
? 

Uncertainty Propagation 
𝑥𝑥1~𝜇𝜇𝑥𝑥1 

Find parameters of 
To 

𝒙𝒙∗(𝟐𝟐) 

Moments of uncertain state 𝑥𝑥1: 
𝑦𝑦𝛼𝛼 = 𝐸𝐸[𝑥𝑥1𝛼𝛼] = 𝐸𝐸[𝑓𝑓𝛼𝛼 𝑥𝑥0, 𝑢𝑢0, 𝜔𝜔0 ] 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 108 



                                                                        

        
  

  

  

109

Goal 

𝑥𝑥∗ 

Flow-tube (  ) 
Find parameters of 

Find parameters of 

Find parameters of 
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Example: Control of Uncertain Nonlinear System 

Uncertain Nonlinear System: 

Source of uncertainties: 

Initial states 𝑥𝑥1 0 , 𝑥𝑥2 0 , 𝑥𝑥3 0 ~𝑝𝑝𝑝𝑝𝑥𝑥0(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) 

Uncertain Parameter 𝜔𝜔(𝑘𝑘)~𝑝𝑝𝑝𝑝𝜔𝜔𝑘𝑘 
(𝜔𝜔) Find parameters of 

To Suppose at time 𝑘𝑘: 

𝑥𝑥1 𝑘𝑘 , 𝑥𝑥2 𝑘𝑘 , 𝑥𝑥3 𝑘𝑘 ~𝑈𝑈( −0.1 , 0.1 3) 𝜔𝜔(𝑘𝑘)~𝐵𝐵𝑆𝑆𝑡𝑡𝑎𝑎(2,5) 

𝒙𝒙∗(𝒌𝒌 + 𝟏𝟏) 

𝑥𝑥𝑘𝑘~𝜇𝜇𝑥𝑥𝑘𝑘 

                                                                        

 

 

 

  

  

 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 110 



𝒙𝒙∗(𝒌𝒌 + 𝟏𝟏) 

𝑥𝑥𝑘𝑘~𝜇𝜇𝑥𝑥𝑘𝑘 

                                                                        

 

 

 

  

      

     
 

  

 

Example: Control of Uncertain Nonlinear System 

Uncertain Nonlinear System: 

Source of uncertainties: 

Initial states 𝑥𝑥1 0 , 𝑥𝑥2 0 , 𝑥𝑥3 0 ~𝑝𝑝𝑝𝑝𝑥𝑥0(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) 

Uncertain Parameter 𝜔𝜔(𝑘𝑘)~𝑝𝑝𝑝𝑝𝜔𝜔𝑘𝑘 
(𝜔𝜔) Find parameters of 

To Suppose at time 𝑘𝑘: 

𝑥𝑥1 𝑘𝑘 , 𝑥𝑥2 𝑘𝑘 , 𝑥𝑥3 𝑘𝑘 ~𝑈𝑈( −0.1 , 0.1 3) 𝜔𝜔(𝑘𝑘)~𝐵𝐵𝑆𝑆𝑡𝑡𝑎𝑎(2,5) 

 We want to find the control input at time 𝑘𝑘, i.e., 𝑢𝑢(𝑘𝑘), such that states (𝑥𝑥1 𝑘𝑘 + 1 , 𝑥𝑥2 𝑘𝑘 + 1 , 𝑥𝑥3(𝑘𝑘 + 1)) reach the 
2 2 3𝑥𝑥1−0 𝑥𝑥2−0 𝑥𝑥3−0.9neighborhood of the given way-point 0,0,0.9 , i.e. a ball around the way-point 12 − − − ≥ 0, 

0.03 0.02 0.4 
with a high probability. 
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Example: Control of Uncertain Nonlinear System 

Uncertain Nonlinear System: 

Source of uncertainties: 

Initial states 𝑥𝑥1 0 , 𝑥𝑥2 0 , 𝑥𝑥3 0 ~𝑝𝑝𝑝𝑝𝑥𝑥0(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) 

Uncertain Parameter 𝜔𝜔(𝑘𝑘)~𝑝𝑝𝑝𝑝𝜔𝜔𝑘𝑘 
(𝜔𝜔) Find parameters of 

To Suppose at time 𝑘𝑘: 

𝑥𝑥1 𝑘𝑘 , 𝑥𝑥2 𝑘𝑘 , 𝑥𝑥3 𝑘𝑘 ~𝑈𝑈( −0.1 , 0.1 3) 𝜔𝜔(𝑘𝑘)~𝐵𝐵𝑆𝑆𝑡𝑡𝑎𝑎(2,5) 

 We want to find the control input at time 𝑘𝑘, i.e., 𝑢𝑢(𝑘𝑘), such that states (𝑥𝑥1 𝑘𝑘 + 1 , 𝑥𝑥2 𝑘𝑘 + 1 , 𝑥𝑥3(𝑘𝑘 + 1)) reach the 
2 2 3𝑥𝑥1−0 𝑥𝑥2−0 𝑥𝑥3−0.9neighborhood of the given way-point 0,0,0.9 , i.e. a ball around the way-point 12 − − − ≥ 0, 

0.03 0.02 0.4 
with a high probability. 
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 Example: Control of Uncertain Nonlinear System 

 𝑥𝑥1 𝑘𝑘 , 𝑥𝑥2 𝑘𝑘 , 𝑥𝑥3 𝑘𝑘 ~𝑈𝑈( −0.1 , 0.1 3) 𝜔𝜔(𝑘𝑘)~𝐵𝐵𝑆𝑆𝑡𝑡𝑎𝑎(2,5) 

0 

𝜔𝜔𝑘𝑘~𝐵𝐵𝑆𝑆𝑡𝑡𝑎𝑎(5,2) 

𝜔𝜔(𝑘𝑘) ∈ [0,1] 

𝑥𝑥1 𝑘𝑘 , 𝑥𝑥2 𝑘𝑘 , 𝑥𝑥3 𝑘𝑘 ~𝑈𝑈( −0.1 , 0.1 3) 

𝜔𝜔 𝑘𝑘 ~𝐵𝐵𝑆𝑆𝑡𝑡𝑎𝑎(5,2) 
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Example: Control of Uncertain Nonlinear System 

 𝑥𝑥1 𝑘𝑘 , 𝑥𝑥2 𝑘𝑘 , 𝑥𝑥3 𝑘𝑘 ~𝑈𝑈( −0.1 , 0.1 3) 𝜔𝜔(𝑘𝑘)~𝐵𝐵𝑆𝑆𝑡𝑡𝑎𝑎(2,5) 

0 

𝜔𝜔𝑘𝑘~𝐵𝐵𝑆𝑆𝑡𝑡𝑎𝑎(5,2) 

𝜔𝜔(𝑘𝑘) ∈ [0,1] 

𝑥𝑥1 𝑘𝑘 , 𝑥𝑥2 𝑘𝑘 , 𝑥𝑥3 𝑘𝑘 ~𝑈𝑈( −0.1 , 0.1 3) 

𝜔𝜔(𝑘𝑘)~𝐵𝐵𝑆𝑆𝑡𝑡𝑎𝑎(5,2) 

d=2 
𝑢𝑢 𝑘𝑘 = 𝑦𝑦𝑢𝑢1 

= 0.476 (Instead of open loop control, we can look for the feedback gains) 
Rank Test: 

𝑃𝑃𝑝𝑝𝑃𝑃𝑏𝑏 𝑃𝑃𝑓𝑓 𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑦𝑦 1 = 1 
≈ 1 

True Prob for 𝑢𝑢=0.476 obtained by Monte-Carlo = 1eigenvalues = 0.0273, 0.3939, 1.3324 eigenvalues = 0.0273, 1.2328 

https://github.com/jasour/rarnop19/tree/master/Lecture7_ChanceOptimization/Example_3_Moment_ChanceOpt 
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Goal

𝑥𝑥0

𝑥𝑥𝑇𝑇

Vehicle Control 

• States (𝑥𝑥, 𝑦𝑦, 𝜃𝜃): position and Steering angle 
• Control inputs: (𝑣𝑣, 𝜓𝜓) Linear and Angular Velocities 
• Control Disturbances: (𝑣𝑣�, 𝜓𝜓�) 

Design the maneuvers, tubes, and nonlinear controller 
in the offline step. 

 In the real-time, execute the right maneuver. 

𝑥𝑥∗(𝑘𝑘) 

Library of maneuvers 
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Goal

𝑥𝑥0

𝑥𝑥𝑇𝑇

Vehicle Control 

• States (𝑥𝑥, 𝑦𝑦, 𝜃𝜃): position and Steering angle 
• Control inputs: (𝑣𝑣, 𝜓𝜓) Linear and Angular Velocities 
• Control Disturbances: (𝑣𝑣�, 𝜓𝜓�) 

• Nominal trajectory for candidate maneuver 

• Flow-Tube at time step 𝑘𝑘 
𝑥𝑥∗(𝑘𝑘) 

Library of maneuvers 
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Goal

𝑥𝑥0

𝑥𝑥𝑇𝑇

Vehicle Control 

• States (𝑥𝑥, 𝑦𝑦, 𝜃𝜃): position and Steering angle 
• Control inputs: (𝑣𝑣, 𝜓𝜓) Linear and Angular Velocities 
• Control Disturbances: (𝑣𝑣�, 𝜓𝜓�) 

• Nominal trajectory for candidate maneuver 

• Flow-Tube at time step 𝑘𝑘 

• State Feedback control 

𝑥𝑥∗(𝑘𝑘) 

Library of maneuvers 

• Control constraints: 
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Goal

𝑥𝑥0

𝑥𝑥𝑇𝑇

To obtain the polynomial dynamics, we compute a degree 3 Taylor expansion of 
the dynamics of the system around the nominal trajectory, at each time 𝑘𝑘. 

Vehicle Control 

Trajectories and Control inputs of the vehicle for different realization of uncertainties 

𝒙𝒙 

𝒚𝒚 

𝜽𝜽 

𝝓𝝓 

𝒗𝒗 

𝑥𝑥∗(𝑘𝑘) 

Library of maneuvers 
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• Instead of maximizing the chance of reaming inside the tube, we can look for chance constrained controllers. 

Goal 

𝑥𝑥∗ 

Flow-tube (  ) 
Find parameters of 

Find parameters of 

Find parameters of 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 119 



                                                                        

 

  

  

      

  
 

Example: Chance Constrained Formulation 

Uncertain Nonlinear System: 

𝑥𝑥1 𝑘𝑘 , 𝑥𝑥2 𝑘𝑘 , 𝑥𝑥3 𝑘𝑘 ~𝑈𝑈( −0.1 , 0.1 3) 

Source of uncertainties: Initial states 𝑥𝑥1 0 , 𝑥𝑥2 0 , 𝑥𝑥3 0 ~𝑝𝑝𝑝𝑝𝑥𝑥0(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) 

Uncertain Parameter 𝜔𝜔(𝑘𝑘)~𝑝𝑝𝑝𝑝𝜔𝜔𝑘𝑘 
(𝜔𝜔) 

 Suppose at time 𝑘𝑘: 𝜔𝜔𝑘𝑘~𝐵𝐵𝑆𝑆𝑡𝑡𝑎𝑎(2,5) 

 We want to find a set of control inputs at time 𝑘𝑘 that steer states (𝑥𝑥1 𝑘𝑘 + 1 , 𝑥𝑥2 𝑘𝑘 + 1 , 𝑥𝑥3(𝑘𝑘 + 1)) to the neighborhood of the 
2 2 3𝑥𝑥1−0 𝑥𝑥2−0 𝑥𝑥3−0.9given way-point 0,0,0.9 , i.e. a ball around the way-point  12 − − − ≥ 0, with a probability greater or 

0.03 0.02 0.4 
equal to 1 − Δ. 
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 Example: Chance Constrained Formulation 

Uncertain Nonlinear System: 

Source of uncertainties: Initial states 𝑥𝑥1 0 , 𝑥𝑥2 0 , 𝑥𝑥3 0 ~𝑝𝑝𝑝𝑝𝑥𝑥0(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) 

Uncertain Parameter 𝜔𝜔(𝑘𝑘)~𝑝𝑝𝑝𝑝𝜔𝜔𝑘𝑘 
(𝜔𝜔) 

 Suppose at time 𝑘𝑘: 𝜔𝜔𝑘𝑘~𝐵𝐵𝑆𝑆𝑡𝑡𝑎𝑎(2,5) 

 We want to find a set of control inputs at time 𝑘𝑘 that steer states (𝑥𝑥1 𝑘𝑘 + 1 , 𝑥𝑥2 𝑘𝑘 + 1 , 𝑥𝑥3(𝑘𝑘 + 1)) to the neighborhood of the 
2 2 3𝑥𝑥1−0 𝑥𝑥2−0 𝑥𝑥3−0.9given way-point 0,0,0.9 , i.e. a ball around the way-point  12 − − − ≥ 0, with a probability greater or 

0.03 0.02 0.4 
equal to 1 − Δ. 

𝑥𝑥1 𝑘𝑘 , 𝑥𝑥2 𝑘𝑘 , 𝑥𝑥3 𝑘𝑘 ~𝑈𝑈( −0.1 , 0.1 3) 
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Example: Control of Uncertain Nonlinear System 

Upper bound on probability 
d=3 

Probability curve obtained by Monte-Carlo 

Outer approximation of 
• We can also fin the inner approximation (Lecture 7) 

: 

https://github.com/jasour/rarnop19/tree/master/Lecture7_ChanceOptimization/Example_3_SOS_ChanceConstrained 
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chance constrained flow-tube based control: 

Goal 

𝑥𝑥∗ 

Flow-tube (  ) 
Set of all control input for which: 

Set of all control input for which: 

Set of all control input for which: 
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Topics: 

 Introduction 

 Polynomial Representation of Obstacles and Dynamical Systems 

 Risk Bounded Trajectory Planning in Uncertain Environments 

 Control of Probabilistic Nonlinear Systems 
• Nonlinear State Feedback Control 
• Receding Horizon Control 

 Flow-Tube based  Control of Probabilistic Nonlinear Systems 

 Chance Constrained Backward Reachability Set 

 Continuous-Time Path Planning in Uncertain Environments 
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Backward Reachability Set Analysis of Probabilistic Nonlinear Systems 

Landing Target 

Initial Set 

Mars Soft Landing 
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Reachability Set Analysis of Dynamical System 

Continuous 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑘𝑘) 𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈 Target Set 𝑋𝑋𝑇𝑇 State space model states inputs Input Constraints 

Goal: Find a set of initial states 𝑋𝑋0 for which set 𝑋𝑋𝑇𝑇 is reachable in 𝑇𝑇 time 
steps under input constraints 𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈 

Backward Reachable Set 

Initial set 𝑋𝑋0 

Target set 𝑋𝑋𝑇𝑇 

𝑥𝑥(0) 

𝑥𝑥(0) 

𝑥𝑥(𝑇𝑇) 

𝑥𝑥(𝑇𝑇) 

𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈 

𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈 
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Reachability Set Analysis of Dynamical System 

Continuous 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑘𝑘) 𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈 Target Set 𝑋𝑋𝑇𝑇 State space model states inputs Input Constraints 

Goal: Find a set of initial states 𝑋𝑋0 for which set 𝑋𝑋𝑇𝑇 is reachable in 𝑇𝑇 time 
steps under input constraints 𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈 

Backward Reachable Set 
Target set 𝑋𝑋𝑇𝑇 

Initial set 𝑋𝑋0 

𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈 
Initial set 𝑋𝑋0 

𝑥𝑥(𝑇𝑇) 

𝑥𝑥(0) 𝑥𝑥(𝑇𝑇) 

𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈 
𝑥𝑥(0) 

Soft Landing Problem 

Landing Target 127 
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Initial set 𝑋𝑋0 

Target set 𝑋𝑋𝑇𝑇 

𝑥𝑥(0) 

𝑥𝑥(0) 

𝑥𝑥(𝑇𝑇) 

𝑥𝑥(𝑇𝑇) 

𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈 

𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈 

Backward Reachable Set 

Landing Target 

Soft Landing Problem 

Initial set 𝑋𝑋0 

128 

 To avoid the target set (pedestrian), vehicle at time 0 should be outside of the initial set 𝑋𝑋0. 

 To reach to the landing site, mars lander should start the landing process from of the initial set 𝑋𝑋0. 
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Chance Constrained Backward Reachability 

Continuous 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘) 𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈 
State space model states inputs Uncertainty ~ p(𝜔𝜔𝑘𝑘):probability distribution Input Constraints 

Target Set 𝑋𝑋𝑇𝑇(𝜔𝜔𝑇𝑇) Uncertainty ~ p(𝜔𝜔𝑇𝑇 ):probability distribution 
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 • Uncertain dynamical system: 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘) 
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Chance Constrained Backward Reachability 

Continuous = 𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘)𝑥𝑥𝑘𝑘+1 𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈 
State space model states Uncertainty ~ p(𝜔𝜔𝑘𝑘):probability distribution inputs Input Constraints 

Target Set 𝑋𝑋𝑇𝑇(𝜔𝜔𝑇𝑇) Uncertainty ~ p(𝜔𝜔𝑇𝑇 ):probability distribution 

Goal: Find a set of initial states 𝑋𝑋0 for which Probability that set 𝑋𝑋𝑇𝑇 is reachable in 𝑇𝑇 time steps under input 
constraints is greater than 1 − Δ . 

Initial set 𝑋𝑋0 

Target set 𝑋𝑋𝑇𝑇 

𝑥𝑥(0) 

𝑥𝑥(0) 

𝑥𝑥(𝑇𝑇) 

𝑥𝑥(𝑇𝑇) 

𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈 

𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈 𝑃𝑃𝑝𝑝𝑃𝑃𝑏𝑏 𝑥𝑥 𝑇𝑇 ∈ 𝑋𝑋𝑇𝑇 𝜔𝜔𝑇𝑇 ≥ 1 − Δ 
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Chance Constrained Backward Reachability 

Goal: Find a set of initial states 𝑋𝑋0 for which Probability that set 𝑋𝑋𝑇𝑇 is reachable in 𝑇𝑇 time steps under input 
constraints is greater than 1 − Δ . 

Target Set: 

States at time step 𝑇𝑇: 

• 

• 
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Chance Constrained Backward Reachability 

Goal: Find a set of initial states 𝑋𝑋0 for which Probability that set 𝑋𝑋𝑇𝑇 is reachable in 𝑇𝑇 time steps under input 
constraints is greater than 1 − Δ . 

Target Set: 

States at time step 𝑇𝑇: 

• 

• 

• 
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Chance Constrained Backward Reachability 

Goal: Find a set of initial states 𝑋𝑋0 for which Probability that set 𝑋𝑋𝑇𝑇 is reachable in 𝑇𝑇 time steps under input 
constraints is greater than 1 − Δ . 

Target Set: • 
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• States at time step 𝑇𝑇: 

• 



           
   

                                                                        

  
 

Chance Constrained Backward Reachability 

Goal: Find a set of initial states 𝑋𝑋0 for which Probability that set 𝑋𝑋𝑇𝑇 is reachable in 𝑇𝑇 time steps under input 
constraints is greater than 1 − Δ . 

Design parameter ? Uncertain parameters with 
known probability distribution 
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Chance Constrained Backward Reachability 

Goal: Find a set of initial states 𝑋𝑋0 for which Probability that set 𝑋𝑋𝑇𝑇 is reachable in 𝑇𝑇 time steps under input 
constraints is greater than 1 − Δ . 

Uncertain parameters with 
known probability distribution 

Design parameter 

𝑢𝑢𝑘𝑘 ~𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓𝑃𝑃𝑝𝑝𝑚𝑚 over the constraint set 𝑈𝑈 
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Chance Constrained Backward Reachability 

Goal: Find a set of initial states 𝑋𝑋0 for which Probability that set 𝑋𝑋𝑇𝑇 is reachable in 𝑇𝑇 time steps under input 
constraints is greater than 1 − Δ . 

Uncertain parameters with 
known probability distribution 

Design parameter 

𝑢𝑢𝑘𝑘 ~𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓𝑃𝑃𝑝𝑝𝑚𝑚 over the constraint set 𝑈𝑈 
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: Chance constrained set with respect to uncertainties 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘 , 𝑣𝑣 and design variable 𝑥𝑥0. 



           
   

                                                                        

  
 

       

   

     

Chance Constrained Backward Reachability 

Goal: Find a set of initial states 𝑋𝑋0 for which Probability that set 𝑋𝑋𝑇𝑇 is reachable in 𝑇𝑇 time steps under input 
constraints is greater than 1 − Δ . 

Design parameter Uncertain parameters with 
known probability distribution 

𝑢𝑢𝑘𝑘 ~𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓𝑃𝑃𝑝𝑝𝑚𝑚 over the constraint set 𝑈𝑈 

: Chance constrained set with respect to uncertainties 𝑢𝑢𝑘𝑘 , 𝜔𝜔𝑘𝑘 , 𝑣𝑣 and design variable 𝑥𝑥0. 

Using the results of Lecture 7:Nonlinear Chance Constrained and Chance Optimization: 

• A. Jasour, B. Williams, “Chance Constrained Backward Reachable Set For Probabilistic Nonlinear Systems”, (To appear) 
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Topics: 

 Introduction 

 Polynomial Representation of Obstacles and Dynamical Systems 

 Risk Bounded Trajectory Planning in Uncertain Environments 

 Control of Probabilistic Nonlinear Systems 
• Nonlinear State Feedback Control 
• Receding Horizon Control 

 Flow-Tube based  Control of Probabilistic Nonlinear Systems 

 Chance Constrained Backward Reachability Set 

 Continuous-Time Path Planning 
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Sum of Squares Based 
Continuous Time Path Planning 
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• To design trajectories for dynamical systems, we can rely on motion planning algorithms (e.g., trajectory optimization, 
𝑝𝑝𝑝𝑝𝑡𝑡∗, PRM,….) 

• In this section, we look at one possible Sum-of-Squares based technique. 
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 Given, initial and goal points inside a convex polytope (safe region), Find a polynomial trajectory that 
i) Connects the given points and ii) is safe over its entire length (remains inside the safe region). 
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 Given, initial and goal points inside a convex polytope (safe region), Find a polynomial trajectory that 
i) Connects the given points and ii) is safe over its entire length (remains inside the safe region). 

polynomial trajectory : 

Polynomial in time with unknown coefficients 𝑆𝑆𝑥𝑥𝑖𝑖 

Polynomial in time with unknown coefficients 𝑆𝑆𝑦𝑦𝑖𝑖 
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 Given, initial and goal points inside a convex polytope (safe region), Find a polynomial trajectory that 
i) Connects the given points and ii) is safe over its entire length (remains inside the safe region). 

polynomial trajectory : 

Polynomial in time with unknown coefficients 𝑆𝑆𝑥𝑥𝑖𝑖 

Polynomial in time with unknown coefficients 𝑆𝑆𝑦𝑦𝑖𝑖 

Boundary conditions: 

Linear constraints 
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 Given, initial and goal points inside a convex polytope (safe region), Find a polynomial trajectory that 
i) Connects the given points and ii) is safe over its entire length (remains inside the safe region). 

polynomial trajectory : 

Polynomial in time with unknown coefficients 𝑆𝑆𝑥𝑥𝑖𝑖 

Polynomial in time with unknown coefficients 𝑆𝑆𝑦𝑦𝑖𝑖 

Boundary conditions: 

Linear constraints 

Safety Constraints: 

SOS constraints 

• Similarly, we can add additional constraints on velocity, acceleration 
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 Given, initial and goal points inside a convex polytope (safe region), Find a polynomial trajectory that 
i) Connects the given points and ii) is safe over its entire length (remains inside the safe region). 

polynomial trajectory : 

 SOS based SDP in the coefficients of the trajectories 𝑝𝑝𝑥𝑥(𝑡𝑡) and 𝑝𝑝𝑦𝑦(𝑡𝑡) 
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 Given, i) a set of convex regions that covers the obstacle-free space, and ii) initial and goal point 
 We can formulate the trajectory planning problem as mixed-integer SDP. 

• integer variable for each convex region to choose the sequence of regions to construct the trajectory. 
• SDP for each convex region. 

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

R. Deits, R. Tedrake”Efficient mixed-integer planning for UAVs in cluttered environments”, IEEE International Conference on Robotics and Automation(ICRA) 2015. 
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Topics: 
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 Polynomial Representation of Obstacles and Dynamical Systems 

 Risk Bounded Trajectory Planning in Uncertain Environments 

 Control of Probabilistic Nonlinear Systems 
• Nonlinear State Feedback Control 
• Receding Horizon Control 

 Flow-Tube based  Control of Probabilistic Nonlinear Systems 

 Chance Constrained Backward Reachability Set 

 Continuous-Time Path Planning 
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• A. Jasour, "Convex Approximation of Chance Constrained Problems: Application in Systems and Control", School of 
Electrical Engineering and Computer Science, The Pennsylvania State University, 2016 

• Fabrizio Dabbene and Didier Henrion,  “Set approximation via minimum-volume polynomial sublevel sets”, European Control Conference 
(ECC), pp 1114-1119, 2013 

• F. Dabbene, D. Henrion, C. M.Lagoa “Simple approximations of semialgebraic sets and their applications to control”, Automatica Volume 78, 
pp. 110-118, 2017. 

• A. A. Ahmadi, G. Hall, A. Makadia, and V. Sindhwani, “Sum of Squares Polynomials and Geometry of 3D Environments” Robotics: Science 
and Systems, 2017. 

• A. Jasour, Brian C. Williams, "Risk Contours Map for Risk Bounded Motion Planning under Perception Uncertainties", Robotics: Science 
and System (RSS), Germany, 2019. 

• A. Jasour, Brian Williams, "Convex Optimization For Flow-Tube Based Control Of Nonlinear Systems With Probabilistic Uncertainties", IEEE 
Conference on Decision and Control (CDC), 2019. 

• A. Jasour, C. Lagoa, ”Convex Relaxations of a Probabilistically Robust Control DesignProblem”, 52st IEEE Conference on Decision and Control, 
Florence, Italy, 2013 

• A. Jasour, C. Lagoa, "Convex Chance Constrained Model Predictive Control", IEEE 55th Conference on Decision and Control (CDC), 2016, Las 
Vegas, USA, 

• A. Jasour, B. Williams, “Chance Constrained Backward Reachable Set For Probabilistic Nonlinear Systems”, (To appear) 

MIT 16.S498: Risk Aware and Robust Nonlinear Planning  Fall 2019 149 



  
 

 
 
 

      
  

 
 
 

           
 

MIT OpenCourseWare 
https://ocw.mit.edu/ 

16.S498 Risk Aware and Robust Nonlinear Planning 
Fall 2019 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/terms
https://ocw.mit.edu

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Slide Number 148
	Slide Number 149



