Lecture 11

Risk Aware Planning and Control Of Probabilistic Nonlinear Dynamical Systems

MIT 16.S498: Risk Aware and Robust Nonlinear Planning Fall 2019

Ashkan Jasour

In this lecture,

- Given a probabilistic nonlinear dynamical system
- We look for state trajectories and control policy to satisfy safety constraints and control objectives, in the presence of probabilistic uncertainties.

In this lecture,

- Given a probabilistic nonlinear dynamical system
- We look for state trajectories and control policy to satisfy safety constraints and control objectives, in the presence of probabilistic uncertainties.

> Topics:

- Risk Bounded Trajectory Planning in Uncertain Environments
- Control of Probabilistic Nonlinear Systems
 - Nonlinear State Feedback Control
 - Receding Horizon Control
- Flow-Tube based Control of Probabilistic Nonlinear Systems
- Chance Constrained Backward Reachability Set
- Continuous-Time Path Planning

In this lecture,

- Given a probabilistic nonlinear dynamical system
- We look for state trajectories and control policy to satisfy safety constraints and control objectives, in the presence of probabilistic uncertainties.

> Topics:

- Risk Bounded Trajectory Planning in Uncertain Environments
- Control of Probabilistic Nonlinear Systems
 - Nonlinear State Feedback Control
 - Receding Horizon Control
- Flow-Tube based Control of Probabilistic Nonlinear Systems
- Chance Constrained Backward Reachability Set
- Continuous-Time Path Planning
- We will leverage on the results of "Lecture 7:Nonlinear Chance Constrained and Chance Optimization".

4

General Schematics:

> In general, we can formulate safe control of probabilistic dynamical system as the following optimization problems:

Chance Optimization

maximize design parameters Probability(Success(design parameters, probabilistic uncertainty))

subject to Constraints(design parameters)

Chance Constrained Optimization

 $\begin{array}{ll} \mbox{minimize}\\ \mbox{design parameters} \end{array} & \mbox{Objective Function(design parameters)}\\ \mbox{subject to} & \mbox{Probability(Success(design parameters, probabilistic uncertainty))} \geq 1 - \Delta\\ \mbox{Acceptable risk level} \end{array}$

• *Success* = Remaining safe and achieving the control objectives

 $\chi_{safe}(\omega_{obs})$

Fall 2019

MIT 16.S498: Risk Aware and Robust Nonlinear Planning

Chance Optimization

Find a sequence of control inputs $[u_0, ..., u_{N-1}]$

 $\begin{array}{l} \underset{u_k|_{k=0}^{N-1}}{\text{maximize}} & \text{Prob}(x_k \in \chi_{safe}(\omega_{obs}), x_T \in \chi_T) \\ \text{subject to} & x_{k+1} = f(x_k, u_k, \omega_k) \\ & u_k \in \mathcal{U} \end{array}$

- **Success** = Remaining safe and reaching the goal
- For state feedback control, we look for the feedback gains.

 $\chi_{safe}(\omega_{obs})$

 χ_T

Chance Optimization

Find a sequence of control inputs $[u_0, ..., u_{N-1}]$

 $\begin{array}{l} \underset{u_k|_{k=0}^{N-1}}{\text{maximize}} \quad \left| \operatorname{Prob}(x_k \in \chi_{safe}(\omega_{obs}), x_T \in \chi_T) \right. \\ \text{subject to} \quad x_{k+1} = f(x_k, u_k, \omega_k) \\ \quad u_k \in \mathcal{U} \end{array} \right.$

- **Success** = Remaining safe and reaching the goal
- For state feedback control, we look for the feedback gains.

Chance Constrained Optimization

Find a sequence of control inputs $[u_0, ..., u_{N-1}]$

 $\begin{array}{ll}
\begin{array}{l} \underset{u_{k}|_{k=0}^{N-1}}{\text{minimize}} & \sum_{k=0}^{N-1} u^{2}(k) \\ \text{subject to} & \overline{\mathbf{E}[x_{T}] = x_{T}^{*}} & \text{or } \operatorname{Prob}(x_{T} \in \chi_{T}) \geq 1 - \Delta \\ & \\ \hline x_{k+1} = f(x_{k}, u_{k}, \omega_{k}) \\ & \overline{\mathbf{Prob}(x_{k} \in \chi_{safe}(\omega_{obs})) \geq 1 - \Delta} \\ & \\ x_{0} \sim \operatorname{pr}(x), \ \omega_{k} \sim \operatorname{pr}(\omega_{k}) \\ & \\ \hline u_{k} \in \mathcal{U} \end{array}$

- *Success* = Remaining Safe
- For state feedback control, we look for the feedback gains.

 $\chi_{safe}(\omega_{obs})$

 χ_T

In this lecture, we mainly focus on particular class of problems as follows:

- > Topics:
 - Risk Bounded Trajectory Planning in Uncertain Environments
 - Control of Probabilistic Nonlinear Systems
 - Nonlinear State Feedback Control
 - Receding Horizon Control –

- Deals with environment uncertainties
- Identifies risky regions in the environment
- Chance constrained formulation

- Chance optimization formulation
- Chance constrained formulation
- Flow-Tube based Control of Probabilistic Nonlinear Systems -
- Chance Constrained Backward Reachability Set -
- Continuous-Time Path Planning –

- Sequential Chance optimization formulation
- Chance constrained formulation
- Generates trajectories for the robot
- SOS and Chance optimization formulation

Topics:

Introduction

Polynomial Representation of Obstacles and Dynamical Systems

Risk Bounded Trajectory Planning in Uncertain Environments

Control of Probabilistic Nonlinear Systems

- Nonlinear State Feedback Control
- Receding Horizon Control

Flow-Tube based Control of Probabilistic Nonlinear Systems

Chance Constrained Backward Reachability Set

Continuous-Time Path Planning

Polynomial Representation of Obstacles

Problem Statement:

Given a set of *N* points in *n* dimensional space: \succ

 $x_i \in \mathbb{R}^n, \ i = 1, \dots, N$

Find the smallest semialgebraic set that contains the given data

 $\chi = \{ x \in \mathbb{R}^n : \mathcal{P}_d(x) \ge 1 \}$

Polynomial level set

MIT 16.S498: Risk Aware and Robust Nonlinear Planning

Applications

Geometrical representation of objects form point cloud data (sensory data)
 Uncertainty set constriction from the samples
 Data clustering

- Fabrizio Dabbene and Didier Henrion, "Set approximation via minimum-volume polynomial sublevel sets", European Control Conference (ECC), pp 1114-1119, 2013
- F. Dabbene, D. Henrion, C. M.Lagoa "Simple approximations of semialgebraic sets and their applications to control", Automatica Volume 78, pp. 110-118, 2017.
- A. A. Ahmadi, G. Hall, A. Makadia, and V. Sindhwani, "Sum of Squares Polynomials and Geometry of 3D Environments" Robotics: Science and Systems, 2017.

 \blacktriangleright Given a set of N points in n dimensional space: $x_i \in \mathbb{R}^n, \ i = 1, ..., N$

► Find the smallest semialgebraic set that contains the given data where, $vol(\chi) = \int_{\chi} dx$ is the volume of the set. $\min_{\chi \subset \mathbb{R}^n} vol(\chi)$ subject to $x_i \in \chi, i = 1, ..., N$ \blacktriangleright Given a set of N points in n dimensional space: $x_i \in \mathbb{R}^n, \ i = 1, ..., N$

Find the smallest semialgebraic set that contains the given data $\begin{array}{ll} \underset{\chi \subset \mathbb{R}^n}{\mininimize} & \operatorname{vol}(\chi) \\ \text{subject to} & x_i \in \chi, \ i = 1, \dots, N \end{array}$ Where, $\operatorname{vol}(\chi) = \int_{\chi} dx$ is the volume of the set. $\begin{array}{ll} \text{Indicator function based representation:} \\ \text{Volume of the set in terms of the indicator function:} & \operatorname{vol}(\chi) = \int_{\chi} dx = \int \mathbf{I}_{\chi} dx \\ \text{Volume of the set in terms of the indicator function:} & \chi = \{x \in \mathbb{R}^n : \mathbf{I}_{\chi}(x) = 1\} \end{array}$ $\begin{array}{ll} \text{Indicator function based representation:} \\ \text{Volume of the set in terms of the indicator function:} & \chi = \{x \in \mathbb{R}^n : \mathbf{I}_{\chi}(x) = 1\} \end{array}$

 \blacktriangleright Given a set of N points in n dimensional space: $x_i \in \mathbb{R}^n, \ i = 1, ..., N$

minimize $\operatorname{vol}(\chi)$ Find the smallest semialgebraic set that contains the given data $\chi \subset \mathbb{R}^n$ subject to $x_i \in \chi, i = 1, ..., N$ Where, $\operatorname{vol}(\chi) = \int_{\chi} dx$ is the volume of the set. **Indicator function based representation:** $\mathbf{I}_{\chi} = \begin{cases} 1 & \forall x \in \chi, \\ 0 & \forall x \notin \chi \end{cases}$ $\operatorname{vol}(\chi) = \int_{\chi} dx = \int \mathbf{I}_{\chi} dx$ Volume of the set in terms of the indicator function: $\chi = \{ x \in \mathbb{R}^n : \mathbf{I}_{\chi}(x) = 1 \}$ Set described by its indicator function: Upper bound Polynomial approximation of the indictor function: \geq \mathcal{P}_d Indictor function $\mathbf{P}_{\mathbf{sos}}^{*\mathbf{d}} = \min_{\mathcal{P}_d(x) \in \mathbb{R}_d[x]} \int_{\mathbf{P}} \mathcal{P}_d(x) dx$ subject to $\mathcal{P}_d(x) - 1 \ge 0 \quad \forall x \in \chi$ $\mathcal{P}_d(x) \ge 0$ $\int_{\mathbf{B}} \mathcal{P}_d(x) dx \ge \operatorname{vol}(\chi) = \int \mathbf{I}_{\chi} dx$

Fall 2019

 \blacktriangleright Given a set of N points in n dimensional space: $x_i \in \mathbb{R}^n, i = 1, ..., N$

Semialgebraic set representation of data: $\chi = \{x \in \mathbb{R}^n : \mathcal{P}_d(x) \ge 1\}$

https://github.com/jasour/rarnop19/tree/master/Lecture11 Probabilistic Nonlinear Control/ Data Polynomial_Representation

MIT 16.S498: Risk Aware and Robust Nonlinear Planning

Fall 2019

 $\chi = \{ x \in \mathbb{R}^n : \mathcal{P}_{d=4}(x) \ge 1 \} \qquad \qquad \chi = \{ x \in \mathbb{R}^n :$

 $\chi = \{ x \in \mathbb{R}^n : \mathcal{P}_{d=10}(x) \ge 1 \}$

• F. Dabbene, D. Henrion, C. M.Lagoa "Simple approximations of semialgebraic sets and their applications to control", Automatica Volume 78, pp. 110-118, 2017.

• F. Dabbene, D. Henrion, C. M.Lagoa "Simple approximations of semialgebraic sets and their applications to control", Automatica Volume 78, pp. 110-118, 2017.

Convex Set Representation

Set representation of data: Level sets of polynomial $\mathcal{P}_d(x)$

Second order convexity condition:

Hessian matrix
$$\nabla^2 \mathcal{P}_d(x) \ge 0$$

$$\nabla^{2} \mathcal{P}_{d}(x) = \begin{bmatrix} \frac{\partial^{2} \mathcal{P}_{d}}{\partial x_{1}^{2}} & \frac{\partial^{2} \mathcal{P}_{d}}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} \mathcal{P}_{d}}{\partial x_{1} \partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} \mathcal{P}_{d}}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} \mathcal{P}_{d}}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} \mathcal{P}_{d}}{\partial x_{n}^{2}} \end{bmatrix}$$
Polynomial matrix

Convex Set Representation

Level sets of **SOS** polynomials of increasing degree

Level sets of SOS-Convex polynomials of increasing degree

© Robotics: Science and Systems, 2017. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

• A. A. Ahmadi, G. Hall, A. Makadia, and V. Sindhwani, "Sum of Squares Polynomials and Geometry of 3D Environments" Robotics: Science and Systems, 2017.

Polynomial Representation of Dynamical Systems

1) Taylor expansion

Taylor expand the dynamics about the point (equilibrium point, way-point).

> Taylor expansion of function f(x) at point a:

$$\sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x-a)^n$$

1) Taylor expansion

Taylor expand the dynamics about the point (equilibrium point, way-point).

> Taylor expansion of function f(x) at point a:

$$\sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x-a)^n$$

Example: to describe motion we need "Trigonometric functions".

$$\psi$$

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ \psi \end{bmatrix}, \quad \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, \mathbf{w}) = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} -v \sin \psi + w \\ v \cos \psi \\ u \end{bmatrix}$$
• Polynomial dynamics: Taylor expansion of trigonometric functions to degree 3 at point $\psi = 0$

A. Ahmadi, A. Majumdary, "Some applications of polynomial optimization in operations research and real-time decision making", Optimization Letters, Volume 10, Issue 4, pp 709–729, 2016.

Trigonometric functions - Taylor expansion of order *n*

Trigonometric functions - Taylor expansion of order *n*

2) New state variables

Example 1:

States:
$$x = [\theta, \dot{\theta}]^T$$

Dynamics: $\dot{x}_2 = \frac{1}{ml^2}(-mglsinx_1 - bx_2)$

Define: $s \equiv sin\theta$ $c \equiv cos\theta$

Chapter 10: Underactuated Robotics, Algorithms for Walking, Running, Swimming, Flying, and Manipulation, Russ Tedrake.

 θ

 $ml^2\ddot{\theta} + mglsin\theta = -b\dot{\theta}$

m

3) Change of Coordinates

Dubin's Car Model:

$$\dot{x} = v\cos(\theta)$$
$$\dot{y} = v\sin(\theta)$$
$$\dot{\theta} = \omega$$

Coordinate and input transform

 $z_1 = \theta$ $z_2 = x\cos(\theta) + y\sin(\theta)$ $z_3 = x\sin(\theta) - y\cos(\theta)$ $u_1 = \omega$ $u_2 = v - z_3 u_1$

Polynomial model: $\dot{z}_1 = u_1$ $\dot{z}_2 = u_2$ $\dot{z}_3 = z_2 u_1$

• D. DeVon, T. Bretl, "Kinematic and dynamic control of a wheeled mobile robot", IEEE International Conference on Intelligent Robots and Systems, 2007.

Topics:

Introduction

Polynomial Representation of Obstacles and Dynamical Systems

Risk Bounded Trajectory Planning in Uncertain Environments

- Control of Probabilistic Nonlinear Systems
 - Nonlinear State Feedback Control
 - Receding Horizon Control

Flow-Tube based Control of Probabilistic Nonlinear Systems

- Chance Constrained Backward Reachability Set
- Continuous-Time Path Planning

Risk Bounded Trajectory Planning in Uncertain Environments

Goal: Risk Bounded Trajectory Planning in presence of perception uncertainties

Perception Uncertainties:

Probabilistic uncertainties in location, size, and geometry of obstacles

Δ-risk contour: $C_r^{\Delta} =$ {All points whose "risk" is less than or equal to **Δ**}

–<mark>Risk Contours Map</mark>-

Risk Contours Map: Collection of Δ -risk contours Risk levels: $\Delta_i \in [0,1]$

MIT 16.S498: Risk Aware and Robust Nonlinear Planning

Illustrative Example:

Circle shaped obstacle with probabilistic size

$$\chi_{obs}(\omega) = \{ x \in \mathbb{R}^2 : x_1^2 + x_2^2 - \omega^2 \le 0 \}$$

 $\omega \sim \text{Uniform}[0.3, 0.4]$

Illustrative Example:

Circle shaped obstacle with probabilistic size

$$\chi_{obs}(\omega) = \{ x \in \mathbb{R}^2 : x_1^2 + x_2^2 - \omega^2 \le 0 \}$$

 $\omega \sim \text{Uniform}[0.3, 0.4]$

$$C_r^{\Delta=0} = \{$$
All points whose "risk" is less than or equal to $\Delta \} = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 0.4^2 \ge 0\}$
Probability $(\omega \ge 0.4) = 0$

Illustrative Example:

Circle shaped obstacle with probabilistic size

$$\chi_{obs}(\omega) = \{ x \in \mathbb{R}^2 : x_1^2 + x_2^2 - \omega^2 \le 0 \}$$

 $\omega \sim \text{Uniform}[0.3, 0.4]$

 $C_r^{\Delta=0} = \{ \text{All points whose "risk" is less than or equal to } \Delta \} = \{ x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 0.4^2 \ge 0 \}$ Probability $(\omega \ge 0.4) = 0$

 $C_r^{\Delta=0.5} = \{ \text{All points whose "risk" is less than or equal to } \Delta \} = \{ x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 0.35^2 \ge 0 \}$ Probability $(\omega \ge 0.35) = 0.5$

Application: Risk Bounded Motion Planning

 $\mathcal{C}_{r_1}^{\Delta}$ Find trajectory P(t) such that: χ_T i) Boundary Conditions: $P(0) = x_0, P(T) = x_T$ ii) Chance Constraints: $\operatorname{Prob}\{P(t) \in \chi_{obs_i}(\omega_i)\} \leq \Delta, \ i = 1, ..., o, \ \forall t \in [0, T]$ Uncertain Obstacle Acceptable Risk Level Time P(t)**Deterministic Constraints** in terms of Δ -risk contours: $P(t) \in \{x \in \chi : \bigcap_{i=1}^{o} \mathcal{C}_{r_i}^{\Delta}\}, \ \forall t \in [0, T]$ x_0 Δ -risk contour of obstacle *i* $\mathcal{C}^{\Delta}_{r_2}$

Fall 2019

Risk Contours Construction

Δ-risk contour: $C_r^{\Delta} = \{ \text{All points whose "risk" is less than or equal to } \Delta \}$ = $\{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{obs}(\omega)) \leq \Delta \}$

Chance Constrained Set

Main Idea: Polynomial approximation of the probabilistic constraint.

Risk Contours Construction

Δ-risk contour: $C_r^{\Delta} =$ {All points whose "risk" is less than or equal to **Δ**} $= \{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{obs}(\omega)) \le \Delta \}$ **Chance Constrained Set Main Idea:** Polynomial approximation of the probabilistic constraint. Inner approximation $\bar{\mathcal{C}}_r^{\Delta} = \{x \in \chi : \mathcal{P}_{inner}(x) \le \Delta\}$ **Outer approximation** $\hat{\mathcal{C}}_r^{\Delta} = \{ x \in \chi : \mathcal{P}_{outer}(x) \ge 1 - \Delta \}$ **\Delta** Sublevel set of polynomial $\mathcal{P}_{inner}(x)$ $(\mathbf{1} - \mathbf{\Delta})$ Superlevel set of polynomial $\mathcal{P}_{outer}(x)$ $\mathcal{P}_{outer}(x)$ $\chi_2 \quad \hat{\mathcal{C}}_r^{\Delta}$: Risk $\leq \Delta$ $X_2 \quad \overline{\mathcal{C}}_r^{\Delta}$: Risk $\leq \Delta$ $\mathcal{P}_{inner}(x)$ 1-Δ -1-Δ Δ 16.S498: Risk Aware and Robust Nonlinear Planning 41 Fall 2019

\Delta-risk contour:
$$C_r^{\Delta} = \{ \text{All points whose "risk" is less than or equal to } \Delta \}$$

= $\{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{obs}(\omega)) \leq \Delta \}$

Outer approximation

 $\begin{array}{lll} \Delta \text{-risk contour:} & \mathcal{C}_{r}^{\Delta} = \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) \leq \Delta \} &= \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{safe}(\omega)) \geq 1 - \Delta \} \end{array}$ $\begin{array}{lll} \textbf{Sets:} & \chi_{obs}(\omega) = \{ x \in \mathbb{R}^{n} : g(x, \omega) \leq 0 \} & \textbf{Complement set:} & \chi_{safe}(\omega) = \chi - \chi_{obs}(\omega) \\ & \text{State space uncertainty space} \\ \mathcal{K}_{obs} = \{ (x, \omega) \in \mathbb{R}^{n} \times \mathbb{R}^{m} : \ g(x, \omega) \leq 0 \} & \textbf{Complement set:} & \mathcal{K}_{safe} = \chi \times \Omega - \mathcal{K}_{obs} \end{array}$

 $\Delta\text{-risk contour:} \quad \mathcal{C}_r^{\Delta} = \{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{obs}(\omega)) \le \Delta \} = \{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{safe}(\omega)) \ge 1 - \Delta \}$ Complement set: $\chi_{safe}(\omega) = \chi - \chi_{obs}(\omega)$ $\chi_{obs}(\omega) = \{ x \in \mathbb{R}^n : g(x, \omega) \le 0 \}$ Sets: State space uncertainty space Complement set: $\mathcal{K}_{safe} = \stackrel{\uparrow}{\chi} \times \stackrel{\uparrow}{\Omega} - \mathcal{K}_{obs}$ $\mathcal{K}_{obs} = \{ (x, \omega) \in \mathbb{R}^n \times \mathbb{R}^m : q(x, \omega) < 0 \}$

 \succ To obtain risk contour set, we need to find polynomial approximation of indicator function of set \mathcal{K}_{safe} .

Fall 2019

Inner approximation:

$\Delta\text{-risk contour:}\qquad\qquad \mathcal{C}_r^{\Delta} = \{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{obs}(\omega)) \leq \Delta \}$

$$\chi = \{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) \leq \Delta \} + \{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) > \Delta \}$$
$$\mathcal{C}_{r}^{\Delta}$$

- In the previous slide, we obtained the outer approximation of the set $\{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{safe}(\omega)) \ge 1 \Delta \}$
- We can apply the same methodology to obtain the outer approximation of the set $\{x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{obs}(\omega)) > \Delta\}$

Inner approximation:

$\Delta\text{-risk contour:}\qquad\qquad \mathcal{C}_r^{\Delta} = \{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{obs}(\omega)) \leq \Delta \}$

$$\chi = \{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{obs}(\omega)) \leq \Delta \} + \{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{obs}(\omega)) > \Delta \}$$
$$\mathcal{C}_{r}^{\Delta}$$

- In the previous slide, we obtained the outer approximation of the set $\{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{safe}(\omega)) \ge 1 \Delta \}$
- We can apply the same methodology to obtain the outer approximation of the set $\{x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{obs}(\omega)) > \Delta\}$

$$\begin{split} \chi &= \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) \leq \Delta \} + \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) > \Delta \\ & \\ \text{Inner approximation } \bigcup \\ \bar{\mathcal{C}}_{r}^{\Delta} &= \{ x \in \chi : \mathcal{P}_{inner}(x) \leq \Delta \} \\ \hline \{ x \in \chi : \mathcal{P}_{inner}(x) \geq \Delta \} \\ \end{split}$$

Inner approximation:

$$\Delta\text{-risk contour:}\qquad\qquad \mathcal{C}_r^{\Delta} = \{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{obs}(\omega)) \leq \Delta \}$$

$$\chi = \{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) \le \Delta \} + \{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) > \Delta \}$$
$$\mathcal{C}_{r}^{\Delta}$$

- In the previous slide, we obtained the outer approximation of the set $\{x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{safe}(\omega)) \ge 1 \Delta\}$
- We can apply the same methodology to obtain the outer approximation of the set $\{x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{obs}(\omega)) > \Delta\}$

$$\begin{split} \chi &= \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) \leq \Delta \} + \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) > \Delta \\ \\ & \text{Inner approximation } \bigcup \\ \bar{\mathcal{C}}_{r}^{\Delta} &= \{ x \in \chi : \mathcal{P}_{inner}(x) \leq \Delta \} \\ \hline \{ x \in \chi : \mathcal{P}_{inner}(x) \geq \Delta \} \\ \end{split}$$

 $\Delta \text{ Sublevel set of polynomial } \mathcal{P}_{inner}(x)$ $\bar{\mathcal{C}}_r^{\Delta} = \{ x \in \chi : \mathcal{P}_{inner}(x) \le \Delta \}$

Inner approximation:

 $\begin{array}{ll} \Delta \text{-risk contour:} & \mathcal{C}_r^{\Delta} = \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) \leq \Delta \} \\ \\ \textbf{Sets:} & \chi_{obs}(\omega) = \{ x \in \mathbb{R}^n : g(x, \omega) \leq 0 \} \\ & \mathcal{K}_{obs} = \{ (x, \omega) \in \mathbb{R}^n \times \mathbb{R}^m : \ g(x, \omega) \leq 0 \} \end{array}$

12

E.

$$\begin{array}{ll} \Delta \text{-risk contour:} & \mathcal{C}_{r}^{\Delta} = \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) \leq \Delta \} \\ \\ \textbf{Sets:} & \chi_{obs}(\omega) = \{ x \in \mathbb{R}^{n} : g(x, \omega) \leq 0 \} \\ & \mathcal{K}_{obs} = \{ (x, \omega) \in \mathbb{R}^{n} \times \mathbb{R}^{m} : \ g(x, \omega) \leq 0 \} \\ \\ \textbf{Outer approximation of the set} \ \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) > \Delta \} \\ \\ \textbf{P}_{sos}^{*d} = \min_{\substack{\mathcal{P}(x, \omega) \in \mathbb{R}_{d}[x, \omega] \\ \text{subject to}}} \int \bar{\mathcal{P}}(x, \omega) d\mu_{\omega} dx \\ & \text{subject to}} \quad \bar{\mathcal{P}}(x, \omega) - 1 \geq 0 \quad \forall (x, \omega) \in \mathcal{K}_{obs} \\ & \bar{\mathcal{P}}(x, \omega) \geq 0 \end{array} \right) \text{ polynomial } \bar{\mathcal{P}}(x, \omega) = \text{Upper approximation of indicator function } \mathbf{I}_{\mathcal{K}_{obs}} \\ \\ \\ & \mathcal{P}_{inner}(x) = \mathbb{E}_{\mu_{\omega}}[\mathcal{P}(x, \omega)] = \int \bar{\mathcal{P}}(x, \omega) d\mu_{\omega} \end{array}$$

$$\begin{array}{ll} \Delta \text{-risk contour:} & \mathcal{C}_{r}^{\Delta} = \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) \leq \Delta \} \\ \\ \textbf{Sets:} & \chi_{obs}(\omega) = \{ x \in \mathbb{R}^{n} : g(x, \omega) \leq 0 \} \\ \hline \\ \textbf{Subsection of the set} \ \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) > \Delta \} \\ \\ \textbf{P}_{\mathsf{sos}}^{*\mathsf{d}} = \min_{\substack{\overline{\mathcal{P}}(x,\omega) \in \mathbb{R}_{d} \mid x \in \mathbb{R}^{n}} & \int \mathcal{P}(x, \omega) d\mu_{\omega} dx \\ \text{subject to} & \overline{\mathcal{P}}(x, \omega) - 1 \geq 0 \quad \forall (x, \omega) \in \mathcal{K}_{obs} \\ \hline \\ \overline{\mathcal{P}}(x, \omega) \geq 0 \end{array} \\ \hline \\ \textbf{P}_{inner}(x) = \mathbb{E}_{\mu_{\omega}}[\mathcal{P}(x, \omega)] = \int \overline{\mathcal{P}}(x, \omega) d\mu_{\omega} \\ \hline \\ \textbf{For any } x^{*} \in \chi, \text{ polynomial } \mathcal{P}_{inner}(x^{*}) \text{ is an upper bound on the probability that } x^{*} \in \chi_{obs} \\ \bullet \ \{ x \in \chi : \mathcal{P}_{inner}(x) > \Delta \} \text{ Outer approximation of the set} \ \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) > \Delta \} \\ \bullet \ \{ x \in \chi : \mathcal{P}_{inner}(x) \leq \Delta \} \text{ Inner approximation of the set} \ \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) > \Delta \} \end{array}$$

$$\begin{array}{ll} \Delta \text{-risk contour:} & \mathcal{C}_{r}^{\Delta} = \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) \leq \Delta \} \\ \\ \textbf{Sets:} & \chi_{obs}(\omega) = \{ x \in \mathbb{R}^{n} : g(x, \omega) \leq 0 \} \\ & \mathcal{K}_{obs} = \{ (x, \omega) \in \mathbb{R}^{n} \times \mathbb{R}^{m} : \ g(x, \omega) \leq 0 \} \\ \\ \textbf{Outer approximation of the set} & \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) > \Delta \} \\ \\ \textbf{P}_{sos}^{*d} = \min_{\substack{\mathcal{P}(x, \omega) \in \mathbb{R}_{d}[x, \omega] \\ \text{subject to}}} & \int \mathcal{P}(x, \omega) d\mu_{\omega} dx \\ & \varphi(x, \omega) - 1 \geq 0 \quad \forall (x, \omega) \in \mathcal{K}_{obs}} & \longrightarrow \\ \\ \hline \mathcal{P}_{(x, \omega) \geq 0} & \forall (x, \omega) \in \mathcal{K}_{obs} & \longrightarrow \\ \\ \hline \mathcal{P}_{inner}(x) = \mathbb{E}_{\mu_{\omega}}[\mathcal{P}(x, \omega)] = \int \bar{\mathcal{P}}(x, \omega) d\mu_{\omega} \\ \\ \\ \textbf{For any } x^{*} \in \chi, \ \text{polynomial } \mathcal{P}_{inner}(x^{*}) \ \text{is an upper bound on the probability that } x^{*} \in \chi_{obs} \\ \\ \\ \bullet \{ x \in \chi : \mathcal{P}_{inner}(x) > \Delta \} \ \text{Outer approximation of the set} \ \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) > \Delta \} \\ \\ \bullet \{ x \in \chi : \mathcal{P}_{inner}(x) \leq \Delta \} \ \text{Inner approximation of the set} \ \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) > \Delta \} \end{array}$$

Inner approximation : $\bar{\mathcal{C}}_r^{\Delta} = \{x \in \mathbb{R}^n : \mathcal{P}_{inner}(x) \leq \Delta\}$

Uncertain Obstacles $\chi_{obs}(\omega) = \{x \in \mathbb{I} \mid x \in \mathbb{I}$	$\mathbb{R}^n: g(x,\omega) \le 0\}$
$\Delta\text{-risk contour} \qquad \qquad \mathcal{C}_r^{\Delta} = \{ \ x \in \chi : \ \operatorname{Prob}_{\mu_{\omega}(\omega)}(x \in \chi_{obs}(\omega)) \leq \Delta \}$	
Inner approximation :	Outer approximation :
• Define set $\mathcal{K}_{obs} = \{(x,\omega) \in \mathbb{R}^n \times \mathbb{R}^m : g(x,\omega) \le 0 \}$	• Define set $\mathcal{K}_{safe} = \chi \times \Omega - \mathcal{K}_{obs}$
• SOS Program ($\geq \rightarrow$ SOS) $\mathbf{P}_{sos}^{*d} = \min_{\bar{\mathcal{P}}(x,\omega) \in \mathbb{R}_d[x,\omega]} \int \bar{\mathcal{P}}(x,\omega) d\mu_\omega dx$ subject to $\bar{\mathcal{P}}(x,\omega) - 1 \ge 0 \forall (x,\omega) \in \mathcal{K}_{obs}$ $\bar{\mathcal{P}}(x,\omega) \ge 0$ • Polynomial	• SOS Program ($\geq \rightarrow$ SOS) $P_{sos}^{*d} = \min_{\mathcal{P}(x,\omega) \in \mathbb{R}_d[x,\omega]} \int \mathcal{P}(x,\omega) d\mu_\omega dx$ subject to $\mathcal{P}(x,\omega) - 1 \ge 0 \forall (x,\omega) \in \mathcal{K}_{safe}$ $\mathcal{P}(x,\omega) \ge 0$ • Polynomial $\mathcal{P}_{outer}(x) = E_{\mu_\omega}[\mathcal{P}(x,\omega)] = \int \mathcal{P}(x,\omega) d\mu_\omega$
$\mathcal{P}_{inner}(x) = \mathbb{E}_{\mu_{\omega}}[\mathcal{P}(x,\omega)] = \int \mathcal{P}(x,\omega) d\mu_{\omega}$ Inner approximation : $\bar{\mathcal{C}}_{r}^{\Delta} = \{x \in \mathbb{R}^{n} : \mathcal{P}_{inner}(x) \leq \Delta\}$	Outer approximation : $\hat{\mathcal{C}}_r^{\Delta} = \{x \in \mathbb{R}^n : \mathcal{P}_{outer}(x) \ge 1 - \Delta\}$

Fall 2019

Example 1: Uncertain Obstacle

 $\chi_{obs}(\omega) = \left\{ (x_1, x_2) : x_1^2 + x_2^2 \le \omega^2 \right\}$

 $\omega \sim \text{Uniform} [0.3, 0.4]$

Outer Approximation of \Delta-risk contour $\mathcal{C}_r^{\Delta} = \{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{obs}(\omega)) \leq \Delta \}$

Example 1: Uncertain Obstacle

 $\chi_{obs}(\omega) = \left\{ (x_1, x_2) : x_1^2 + x_2^2 \le \omega^2 \right\}$

 $\omega \sim$ Uniform [0.3,0.4]

Fall 2019

Inner Approximation of Δ -risk contour $C_r^{\Delta} = \{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{obs}(\omega)) \leq \Delta \}$

MIT 16.S498: Risk Aware and Robust Nonlinear Planning

MIT 16.S498: Risk Aware and Robust Nonlinear Planning

Fall 2019

Example 2: Uncertain Unsafe Region

 $\chi_{obs}(\omega) = \{ (x_1, x_2) \in \chi : -39.0625x_1^4 + 3.125x_1^2 - 2.25x_2^2 + 0.01 + 0.5\omega \le 0 \}$

 $\omega \in [0 \ 1]$ ~Beta (1.1,5)

1 0.5 $\Re^{\circ} 0$ -0.5 \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{0} $\int_{x_{1}}^{0}$ $\chi_{obs}(\omega = 1)$ $\chi_{obs}(\omega = 1)$

Robust Planning:

Risk Bounded Planning:

 $\chi_{safe}(\omega) = \{(x_1, x_2) \in \chi : -(x_1^4 + (x_2 - 0.4)^4 + (x_2 - 0.4)^3 - 0.1(\omega - 0.5)) \ge 0\} \qquad \omega \in [0 \ 1] \sim \text{Triangular probability}$

57

Δ-risk contour
$$C_r^{\Delta} = \{ x \in \chi : \operatorname{Prob}_{\mu_{\omega}(\omega)} (x \in \chi_{obs}(\omega)) \leq \Delta \}$$

Outer Approximation of Δ -risk contour

$$\hat{\mathcal{C}}_r^{\Delta} = \{ x \in \chi : \mathcal{P}_{outer}(x) \ge 1 - \Delta \}$$

• Inside of the contours, risk is less or equal Δ

Inner Approximation of Δ -risk contour $\bar{\mathcal{C}}_r^{\Delta} = \{ x \in \chi : \mathcal{P}_{inner}(x) \leq \Delta \}$

• Inside of the contours, risk is less or equal Δ

Example 4: Random Crowd Pattern

 $\omega \in [0 \ 1] \sim \text{Beta (1.1,1.2)}$ $\chi_{obs}(\omega) = \left\{ x \in \mathbb{R}^2 : -(4x_1^2 + 4x_2^2)^3 + 64x_1^2x_2^2 + 0.2\omega - 0.1 \le 0 \right\}$

• Outer approximation of the set of all points whose probability of collision is greater than Δ .

• Probability of observing patterns 1 and 2 are greater or equal to 0.5 and 0.95, respectively.

 $\omega = 0.65$

0

 x_1

 $\omega~=0.3$

0.5

0

-0.5 └─ -0.5

0.5

 x_2

0.5

 $\omega = 1$

0

= 0.48

 x_1

w

0.5

0

-0.5 └--0.5

0.5

 $\omega = 0.5$

0

 x_1

 $\omega = 0$

0.5

0.5

0

-0.5

0.5

-0.5

 x_2

0.5

Topics:

Introduction

Polynomial Representation of Obstacles and Dynamical Systems

Risk Bounded Trajectory Planning in Uncertain Environments

Control of Probabilistic Nonlinear Systems

- Nonlinear State Feedback Control
- Receding Horizon Control

Flow-Tube based Control of Probabilistic Nonlinear Systems

Chance Constrained Backward Reachability Set

Continuous-Time Path Planning

Control of Probabilistic Nonlinear Systems Chance Optimization for Nonlinear State Feedback

Uncertain Dynamical Model

$$x_{k+1} = f(x_k, u_k, \omega_k)$$

 $\mathbf{x}(k) = [x_1(k), ..., x_n(k)]^T \in \chi \subset \mathbb{R}^n \quad \text{states}$ $\mathbf{u}(k) = [u_1(k), ..., u_m(k)]^T \in \mathcal{U} \subset \mathbb{R}^m \quad \text{states}$ $\omega(k) = [\omega_1(k), ..., \omega_l(k)]^T \in \Omega \subset \mathbb{R}^l \quad \text{states}$

• Uncertain Safety Constraint: $\chi(\omega_g) := \{x \in \mathbb{R}^n : g_j(x, \omega_g) \ge 0, j = 1, \dots, n_g \}$

e.g., uncertain safe set, uncertain obstacle set, state constraints

• Final state Constraints $\chi_T := \{x \in \mathbb{R}^n : p_j(x) \ge 0, j = 1, \dots, n_p \}$

• Source of uncertainties: $x_0 \sim pr(x_0)$, $\omega_k \sim pr(\omega_k)$, $\omega_g \sim pr(\omega_g)$

- Design a closed-loop controller to:
- i) Drive the robot to the goal region
- ii) Satisfy safety constraints (e.g. avoid the obstacles)

in the presence of system and environment uncertainties.

• Closed-loop controller in the form of "Polynomial State Feedback", i.e., $u(x_k) = \sum_{\alpha} p_{\alpha} x_k^{\alpha}$ Feedback gains

Chance Optimization

maximize Feedback gains Probability(Reaching the Target Set & Satisfying Safety Constraints Over Planning Horizon) subject to Constraints(design parameters)

Ashkan Jasour, C. Lagoa, "Convex Relaxations of a Probabilistically Robust Control Design Problem", 52st IEEE Conference on Decision and Control, Florence, Italy, 2013

Example 1:

- Dynamical system: $x_1(k+1) = x_2(k)$ $x_2(k+1) = x_1(k)x_2(k) + \omega(k) + u(k)$
- Uncertainties: $x(0) \sim \text{Uniform}[-5,5]^2, \quad \omega(k) \sim \text{Uniform}[-0.5,0.5]$
- Target set: $\chi_T = [-1, 1]^2$ T = 2
- Feedback Control: $u(x(k)) = b_1 x_1^2(k) + b_2 x_1(k) x_2(k) + b_3 x_2^2(k)$ $(b_1, b_2, b_3) \in [-1, 1]^3$
- Goal: $x(2) \in \chi_T = [-1, 1]^2$
- Chance Optimization: $\begin{array}{ll} \max \\ b_1, b_2, b_3 \end{array} \quad \operatorname{Probability}(x(2) \in \chi_T = [-1, 1]^2) \\ \text{subject to} \quad (b_1, b_2, b_3) \in [-1, 1]^3 \end{array}$

Fall 2019

Dynamical system: •

$x_1(k+1) = x_2(k)$ $x_2(k+1) = x_1(k)x_2(k) + \omega(k) + u(k)$

Feedback Control: •

۲

• Dynamical system:

• Feedback Control:

$$x_1(k+1) = x_2(k)$$

$$x_2(k+1) = x_1(k)x_2(k) + \omega(k) + u(k) \qquad u(x(k)) = b_1 x_1^2(k) + b_2 x_1(k)x_2(k) + b_3 x_2^2(k)$$

• By recursion:
$$\begin{cases} x_1(2) = x_2(1) \\ x_2(2) = x_1(1)x_2(1) + \omega(1) + u(1) \end{cases} \quad \begin{cases} x_1(1) = x_2(0) \\ x_2(1) = x_1(0)x_2(0) + \omega(0) + u(0) \end{cases}$$

• $x_1(2), x_2(2)$ in terms of uncertain parameters $x_1(0), x_2(0), \omega(0), \omega(1)$ and design parameters b_1, b_2, b_3 :

$$[x_1(2) = x_1(0)x_2(0) + \omega(0) + b_1x_1^2(0) + b_2x_1(0)x_2(0) + b_3x_2^2(0) + b_3x_$$

$$x_{2}(2) = x_{2}(0) \left(x_{1}(0)x_{2}(0) + \omega(0) + b_{1}x_{1}^{2}(0) + b_{2}x_{1}(0)x_{2}(0) + b_{3}x_{2}^{2}(0) \right) + \omega(1)$$

$$+ b_{1}(x_{2}(0))^{2} + b_{2}x_{2}(0) \left(x_{1}(0)x_{2}(0) + \omega(0) + \left(b_{1}x_{1}^{2}(0) + b_{2}x_{1}(0)x_{2}(0) + b_{3}x_{2}^{2}(0) \right) \right) + b_{3}\left(x_{1}(0)x_{2}(0) + \omega(0) + \left(b_{1}x_{1}^{2}(0) + b_{2}x_{1}(0)x_{2}(0) + b_{3}x_{2}^{2}(0) \right) \right)^{2}$$

• Dynamical system:

• Feedback Control:

$$x_1(k+1) = x_2(k)$$

$$x_2(k+1) = x_1(k)x_2(k) + \omega(k) + u(k) \qquad u(x(k)) = b_1 x_1^2(k) + b_2 x_1(k)x_2(k) + b_3 x_2^2(k)$$

• By recursion:
$$\begin{bmatrix} x_1(2) = x_2(1) \\ x_2(2) = x_1(1)x_2(1) + \omega(1) + u(1) \end{bmatrix} \begin{bmatrix} x_1(1) = x_2(0) \\ x_2(1) = x_1(0)x_2(0) + \omega(0) + u(0) \end{bmatrix}$$

• $x_1(2), x_2(2)$ in terms of uncertain parameters $x_1(0), x_2(0), \omega(0), \omega(1)$ and design parameters b_1, b_2, b_3 :

$$x_1(2) = x_1(0)x_2(0) + \omega(0) + b_1x_1^2(0) + b_2x_1(0)x_2(0) + b_3x_2^2(0)$$

$$p_{x_1}(x(0), \omega(0), b_1, b_2, b_3)$$

$$x_{2}(2) = x_{2}(0) \left(x_{1}(0)x_{2}(0) + \omega(0) + b_{1}x_{1}^{2}(0) + b_{2}x_{1}(0)x_{2}(0) + b_{3}x_{2}^{2}(0) \right) + \omega(1)$$

$$+ b_{1}(x_{2}(0))^{2} + b_{2}x_{2}(0) \left(x_{1}(0)x_{2}(0) + \omega(0) + \left(b_{1}x_{1}^{2}(0) + b_{2}x_{1}(0)x_{2}(0) + b_{3}x_{2}^{2}(0) \right) \right) + b_{3}\left(x_{1}(0)x_{2}(0) + \omega(0) + \left(b_{1}x_{1}^{2}(0) + b_{2}x_{1}(0)x_{2}(0) + b_{3}x_{2}^{2}(0) \right) \right)^{2}$$

 $p_{x_2}(x(0), \omega(0), \omega(1), b_1, b_2, b_3)$

• Chance Optimization:

 $\underset{b_{1},b_{2},b_{3}}{\text{maximize}} \quad \text{Probability}(-1 \le p_{x_{1}}(x(0),\omega(0),b_{1},b_{2},b_{3}) \le 1, -1 \le p_{x_{2}}(x(0),\omega(0),\omega(1),b_{1},b_{2},b_{3}) \le 1)$

- Convex Chance Optimization in measures: $\mathbf{P}_{\mu}^{*} := \text{maximize}_{\mu_{b},\mu} \int d\mu,$ s.t. $\mu \preccurlyeq \mu_{b} \times (\mu_{x_{0}} \times \mu_{\omega_{0}} \times \mu_{\omega_{1}})$ μ_{b} is a probability measure $supp(\mu_{b}) \subset \{(b_{1}, b_{2}, b_{3}) \in [-1, 1]^{3}\},$ $supp(\mu) = \{-1 \le p_{x_{1}}(x(0), \omega(0), b_{1}, b_{2}, b_{3}) \le 1, -1 \le p_{x_{2}}(x(0), \omega(0), \omega(1), b_{1}, b_{2}, b_{3}) \le 1\}$
- Moment SDP with relaxation order 6: $u(x(k)) = -0.98x_1^2(k) 0.94x_1(k)x_2(k) 0.98x_2^2(k)$

Probability =1

Ashkan Jasour, C. Lagoa, "Convex Relaxations of a Probabilistically Robust Control Design Problem", 52st IEEE Conference on Decision and Control, Florence, Italy, 2013

Example 2: • Dynamical system:
$$x_1(k+1) = \delta x_2(k)$$

 $x_2(k+1) = x_1(k)x_3(k)$
 $x_2(k+1) = x_1(k) - x_2(k) + x_3(k) + u(k)$

- Uncertainties: $x(0) \sim \text{Uniform}[-1, 1]^2, \quad \delta \sim \text{Uniform}[-0.2, 0.2]$
- Target set: $\chi_T = [-0.2, 0.2]^3$ T = 3
- Obstacle: $\chi_{obs} = \{(x_1, x_2, x_3) : 0.3^2 (x_1 + 0.5)^2 (x_2 + 0.5)^2 (x_3)^2 \ge 0\}$
- Feedback Control: $u(x(k)) = b_1 x_1(k) + b_2 x_2(k) + b_3 x_3(k)$ $(b_1, b_2, b_3) \in [-1, 1]^3$
- Goal: $x(3) \in \chi_T = [-0.2, 0.2]^3$ $x(1), x(2) \in \chi_{safe}$
- Chance Optimization:

 $\begin{array}{ll} \underset{b_{1},b_{2},b_{3}}{\text{maximize}} & \text{Probability}(x(3) \in \chi_{T} = [-0.2, 0.2]^{2}, x(1), x(2) \in \chi_{safe}) \\ & \text{subject to} & (b_{1}, b_{2}, b_{3}) \in [-1, 1]^{3} \end{array}$

- Goal: $x(3) \in \chi_T = [-0.2, 0.2]^3$ $x(1), x(2) \in \chi_{safe}$
- Chance Optimization: $\begin{array}{ll} \underset{b_1,b_2,b_3}{\text{maximize}} & \text{Probability}(x(3) \in \chi_T = [-0.2, 0.2]^2, x(1), x(2) \in \chi_{safe}) \\ & \text{subject to} & (b_1, b_2, b_3) \in [-1, 1]^3 \end{array}$
- By recursion, we describe states x(1), x(2), and x(3) in terms of uncertain parameters x₁(0), x₂(0), x₃(0), δ and design parameters b₁, b₂, b₃.

- Goal: $x(3) \in \chi_T = [-0.2, 0.2]^3$ $x(1), x(2) \in \chi_{safe}$
- Chance Optimization: $\begin{array}{ll} \underset{b_1,b_2,b_3}{\text{maximize}} & \text{Probability}(x(3) \in \chi_T = [-0.2, 0.2]^2, x(1), x(2) \in \chi_{safe}) \\ & \text{subject to} & (b_1, b_2, b_3) \in [-1, 1]^3 \end{array}$
- By recursion, we describe states x(1), x(2), and x(3) in terms of uncertain parameters x₁(0), x₂(0), x₃(0), δ and design parameters b₁, b₂, b₃.
 - Solution obtained by Moment SDP with relaxation order 8:

$$u(x(k)) = -0.3x_1(k) + 0.47x_2(k) - 0.86x_3(k)$$

Probability =0.99

- Goal: $x(3) \in \chi_T = [-0.2, 0.2]^3$ $x(1), x(2) \in \chi_{safe}$
- Chance Optimization: $\begin{array}{ll} \underset{b_1,b_2,b_3}{\text{maximize}} & \text{Probability}(x(3) \in \chi_T = [-0.2, 0.2]^2, x(1), x(2) \in \chi_{safe}) \\ & \text{subject to} & (b_1, b_2, b_3) \in [-1, 1]^3 \end{array}$
- By recursion, we describe states x(1), x(2), and x(3) in terms of uncertain parameters x₁(0), x₂(0), x₃(0), δ and design parameters b₁, b₂, b₃.
 - Solution obtained by Moment SDP with relaxation order 8:

 $u(x(k)) = -0.3x_1(k) + 0.47x_2(k) - 0.86x_3(k)$ Probability =0.99

- To improve the estimation of the probability of achieving control goals for the designed controller 1) We can solve moment SDP provided in the lecture 10 (risk estimation) or 2) Monte-Carlo
- Estimated probability of reaching the target set is 0.95 and estimated probability remaining safe over planning horizon is 1.
Chance Optimization

maximize Feedback gains Probability(Reaching the Target Set & Satisfying Safety Constraints Over Planning Horizon)

subject to Constraints(design parameters)

> In the chance optimization based controller design, size of the SDP increases as the planning horizon increase.

Chance Optimization

maximize Feedback gains Probability(Reaching the Target Set & Satisfying Safety Constraints Over Planning Horizon) subject to Constraints(design parameters)

> In the chance optimization based controller design, size of the SDP increases as the planning horizon increase.

$$x(T) \in \chi_T$$
 $x(k) \in \chi_{safe}, \ k = 1, ..., T - 1$

• As *T* increases, we need higher order polynomials to describe the states (by recursion) in terms of uncertain and design parameters. Hence, we need higher relaxation order to solve moment SDP.

Chance Optimization

maximize Feedback gains Probability(Reaching the Target Set & Satisfying Safety Constraints Over Planning Horizon) subject to Constraints(design parameters)

> In the chance optimization based controller design, size of the SDP increases as the planning horizon increase.

$$x(T) \in \chi_T$$
 $x(k) \in \chi_{safe}, \ k = 1, ..., T - 1$

• As *T* increases, we need higher order polynomials to describe the states (by recursion) in terms of uncertain and design parameters. Hence, we need higher relaxation order to solve moment SDP.

> To address problems with long planning horizons:

1) Receding Horizon Formulation 2) Flow-Tube based control

Control of Probabilistic Nonlinear Systems Chance Constrained Receding Horizon Control

Chance Constrained Receding Horizon Control

- Uncertain Dynamical Model $x_{k+1} = f(x_k, u_k, \omega_k)$
- Target Set: $\chi_T := \{ x \in \mathbb{R}^n : p_T(x) \le 0 \}$
- Source of uncertainties: $x_0 \sim pr(x_0)$, $\omega_k \sim pr(\omega_k)$
- Control Constraints: $u_k \in \mathcal{U}_k$

Control Goals:

- 1) Reach the target set with high probability
- 2) Minimize the expected value of the given cost function in terms of states and control input, i.e. $E[p_{cost}(x_i|_{i=k}^{k+h}, u_i|_{i=k}^{k+h})]$

Chance Constrained Receding Horizon Control

- Uncertain Dynamical Model $x_{k+1} = f(x_k, u_k, \omega_k)$
- Target Set: $\chi_T := \{ x \in \mathbb{R}^n : p_T(x) \le 0 \}$
- Source of uncertainties: $x_0 \sim pr(x_0)$, $\omega_k \sim pr(\omega_k)$
- Control Constraints: $u_k \in \mathcal{U}_k$

Control Goals:

- 1) Reach the target set with high probability
- 2) Minimize the expected value of the given cost function in terms of states and control input, i.e. $E[p_{cost}(x_i|_{i=k}^{k+h}, u_i|_{i=k}^{k+h})]$
- In the chance constrained receding horizon formulation, at each time step, we look for the control input such that states gets closer to the target set with some non-zero probability.

- Given the target set $\chi_T := \{x \in \mathbb{R}^n : p_T(x) \le 0\}$, polynomial $p_T(x)$ represent the distance to the target set.
- $p_T(x)$ decreases as the states x gets closer to the target set.

• States get closer to the target set if $p_T(x_{k+1}) \le \alpha p_T(x_k)$

Where, $0 < \alpha < 1$

Chance Constrained Optimization at time k over horizon h: $\begin{array}{l} \underset{u_i|_{i=k}^{k+h}}{\max } & \mathbb{E}[p_{cost}(x_i|_{i=k}^{k+h}, u_i|_{i=k}^{k+h})] \\ & \text{subject to Probability}\left(p_T(x_{k+1}) \leq \alpha p_T(x_k)\right) \geq 1 - \beta p_T(x_k) \\ & u_k \in \mathcal{U}_k \end{array}$ Where, $0 < \alpha, \beta < 1$ $0 \leq \beta p_T(x) < 1$ for all $x \in X$ (state space) Chance Constrained Optimization at time k over horizon h:

$$\begin{array}{l} \underset{u_i|_{i=k}^{k+h}}{\text{maximize}} \quad \mathbf{E}[p_{cost}(x_i|_{i=k}^{k+h}, u_i|_{i=k}^{k+h})] \\ \\ \mathbf{E}[p_{cost}(x_i|_{i=k}^{k+h}, u_i|_{i=k}^{k+h})] \end{array}$$

subject to Probability $(p_T(x_{k+1}) \le \alpha p_T(x_k)) \ge 1 - \beta p_T(x_k)$ $u_k \in \mathcal{U}_k$

Where, $0 < \alpha, \beta < 1$ $0 \le \beta p_T(x) < 1$ for all $x \in X$ (state space)

- Given the target set $\chi_T := \{x \in \mathbb{R}^n : p_T(x) \le 0\}$, polynomial $p_T(x)$ represent the distance to the target set.
- $p_T(x)$ decreases as the states x gets closer to the target set.

Probability
$$(p_T(x_{k+1}) \le \alpha p_T(x_k)) \ge 1 - \beta p_T(x_k)$$

- With some probability states at next time step gets closer to the target set
 - This probability increases as states gets closer to the target set `

Chance Constrained Optimization at time k over horizon h: $\begin{array}{l} \underset{u_i|_{i=k}^{k+h}}{\max } & \mathbb{E}[p_{cost}(x_i|_{i=k}^{k+h}, u_i|_{i=k}^{k+h})] \\ & \text{subject to Probability}\left(p_T(x_{k+1}) \leq \alpha p_T(x_k)\right) \geq 1 - \beta p_T(x_k) \\ & u_k \in \mathcal{U}_k \end{array}$ Where, $0 < \alpha, \beta < 1$ $0 \leq \beta p_T(x) < 1$ for all $x \in X$ (state space)

• In this formulation, chance constraints only depends on the states at next time step. Hence, results in smaller moment SDP.

- Target Set: $\chi_T := \{ x \in \mathbb{R}^n : p_T(x) \le 0 \}$
- Chance Constraint: Probability $(p_T(x_{k+1}) \le \alpha p_T(x_k)) \ge 1 \beta p_T(x_k)$

- Target Set: $\chi_T := \{ x \in \mathbb{R}^n : p_T(x) \le 0 \}$
- Chance Constraint: Probability $(p_T(x_{k+1}) \le \alpha p_T(x_k)) \ge 1 \beta p_T(x_k)$

Theorem: Given an initial state x_0 and $\epsilon > 0$ there exist a time step \hat{k} and lower bound probability \hat{P} such that

$$\operatorname{Prob}\{p_T(x_k) \le \epsilon, \ \forall k \ge \hat{k}\} \ge \hat{P}$$

where

$$\hat{k} \ge \frac{\ln(\epsilon) - \ln(p_T(x_0))}{\ln(\alpha)}$$
$$\hat{P} = \prod_{i=0}^{\hat{k} - 1} (1 - \beta \alpha^i) > 0$$

Theorem 1, Ashkan Jasour, Constantino Lagoa, "Convex Chance Constrained Model Predictive Control", IEEE 55th Conference on Decision and Control (CDC), 2016, Las Vegas, USA

- Target Set: $\chi_T := \{ x \in \mathbb{R}^n : p_T(x) \le 0 \}$
- Chance Constraint: Probability $(p_T(x_{k+1}) \le \alpha p_T(x_k)) \ge 1 \beta p_T(x_k)$

Theorem: Given an initial state x_0 and $\epsilon > 0$ there exist a time step \hat{k} and lower bound probability \hat{P} such that

$$\operatorname{Prob}\{p_T(x_k) \le \epsilon, \ \forall k \ge \hat{k}\} \ge \hat{P}$$

where

$$\hat{k} \ge \frac{\ln(\epsilon) - \ln(p_T(x_0))}{\ln(\alpha)}$$
$$\hat{P} = \prod_{i=0}^{\hat{k}-1} (1 - \beta \alpha^i) > 0$$

• The probability lower bound is a **convergent** product and converges to a non-zero constant.

Example: $(\alpha, \beta) = (0.8, 0.05)$ $\hat{P} \to 0.8169 \ \hat{k} \ge 36$

• The lower bound probability is a conservative bound and the actual probability of the reaching the set is greater than \hat{P} . Theorem 1, Ashkan Jasour, Constantino Lagoa, "Convex Chance Constrained Model Predictive Control", IEEE 55th Conference on Decision and Control (CDC), 2016, Las Vegas, USA • Chance Constrained Optimization:

$$\begin{aligned} \underset{u_{i}|_{i=k}^{k+h}}{\text{maximize}} \quad & \mathrm{E}[p_{cost}(x_{i}|_{i=k}^{k+h}, u_{i}|_{i=k}^{k+h})]\\ \text{subject to Probability}\left(p_{T}(x_{k+1}) \leq \alpha p_{T}(x_{k})\right) \geq 1 - \beta p_{T}(x_{k})\\ & u_{k} \in \mathcal{U}_{k} \end{aligned}$$

Let: $u = [u_i, i = k, ..., k + h]$

$$u \in \mathcal{U} = \{\mathcal{U}_i, i = k, ..., k + h\}$$

• Chance Constrained Optimization:

$$\begin{aligned} \underset{u_{i}|_{i=k}^{k+h}}{\text{maximize}} \quad & \mathrm{E}[p_{cost}(x_{i}|_{i=k}^{k+h}, u_{i}|_{i=k}^{k+h})]\\ \text{subject to Probability}\left(p_{T}(x_{k+1}) \leq \alpha p_{T}(x_{k})\right) \geq 1 - \beta p_{T}(x_{k})\\ & u_{k} \in \mathcal{U}_{k} \end{aligned}$$

Let: $u = [u_i, i = k, ..., k + h]$

- $u \in \mathcal{U} = \{\mathcal{U}_i, i = k, ..., k + h\}$
- By recursion, we describe states x_k in terms of uncertain Parameters and control input. Hence

$$E[p_{cost}(x_i|_{i=k}^{k+h}, u_i|_{i=k}^{k+h})] = p_E(u)$$

Polynomial in terms of u($E[\omega^a]$ replaced by the moments y_a) Chance Constrained Optimization:

$$\begin{array}{l} \underset{u_{i}|_{i=k}^{k+h}}{\text{maximize}} \quad \mathrm{E}[p_{cost}(x_{i}|_{i=k}^{k+h}, u_{i}|_{i=k}^{k+h})]\\ \text{subject to Probability}\left(p_{T}(x_{k+1}) \leq \alpha p_{T}(x_{k})\right) \geq 1 - \beta p_{T}(x_{k})\\ u_{k} \in \mathcal{U}_{k} \end{array}$$

Let: $u = [u_i, i = k, ..., k + h]$

- $u \in \mathcal{U} = \{\mathcal{U}_i, i = k, ..., k + h\}$
- By recursion, we describe states x_k in terms of uncertain Parameters and control input. Hence

$$\begin{split} \mathrm{E}[p_{cost}(x_i|_{i=k}^{k+h}, u_i|_{i=k}^{k+h})] &= p_E(u) \\ &\qquad \qquad \mathsf{Polynomial in terms of } u \\ &\qquad (E[\omega^a] \text{ replaced by the moments } y_a) \end{split}$$

maximize $p_E(u)$ subject to Probability $(p_T(x_{k+1}) \le \alpha p_T(x_k)) \ge 1 - \beta p_T(x_k)$ $u \in \mathcal{U}$ Chance Constrained Optimization:

$$\underset{\mathbf{u}}{\text{maximize}} \quad p_E(u)$$

subject to Probability $(p_T(x_{k+1}) \le \alpha p_T(x_k)) \ge 1 - \beta p_T(x_k)$ $u \in \mathcal{U}$

Using the measure based deterministic and chance optimization:

• Convex Chance Optimization in measures:

$$\mathbf{P}_{\mu}^{*} := \text{maximize}_{\mu_{u},\mu} \int p_{E}(u) d\mu_{u},$$

s.t. $\mu \preccurlyeq \mu_{u} \times \prod_{i=k}^{k+h} \mu_{\omega_{i}}$
 $\mu_{u} \text{ is a probability measure}$
 $\int d\mu \ge 1 - \beta p_{T}(x_{k})$
 $supp(\mu_{u}) \subset \mathcal{U}, \quad supp(\mu) = \{p_{T}(x_{k+1}) - \alpha p_{T}(x_{k}) \le 0\}$

Moment representation to obtain Moment SDP.

Theorem 2, Ashkan Jasour, Constantino Lagoa, "Convex Chance Constrained Model Predictive Control", IEEE 55th Conference on Decision and Control (CDC), 2016, Las Vegas, USA

> Moment representation to obtain Moment SDP.

Receding Horizon Algorithm:

- $\succ k = 0$
- Solve the moment SDP over the horizon h to obtain u(i), i = k, ..., k + h
- > Apply the obtained u(k) to the system to obtain x(k + 1).

 $\succ k \leftarrow k+1$

Ashkan Jasour, Constantino Lagoa, "Convex Chance Constrained Model Predictive Control", IEEE 55th Conference on Decision and Control (CDC), 2016, Las Vegas, USA

- Example:
- Dynamical system:

$$x_1(k+1) = x_2(k)$$

$$x_2(k+1) = x_1(k)x_3(k)$$

$$x_2(k+1) = x_1(k) - x_2(k) + x_3(k) + \omega(k) + u(k)$$

- Uncertainties: $\omega(k) \sim \text{Uniform}[-0.5, 0.5]$
- Target set: $\chi_T = \{(x_1, x_2, x_3) : 0.2^2 x_1^2 x_2^2 x_3^2 \ge 0\}$
- Receding horizon: h = 3
- $(\alpha, \beta) = (0.9, 0.2027)$
- $x_0 = (1,1,1)$

The obtained control input at each time k for the initial condition $x_0 = (1,1,1)$

$$u_k = [-0.227, -0.219, -0.325, -0.196, -0.215, -0.605, 0.550]$$

Where results in the trajectory of

 $\begin{aligned} x_1(k) &= [1, 1, 1, 0.752, 0.892, 0.417, -0.101, 0.0487] \\ x_2(k) &= [1, 1, 0.752, 0.892, 0.417, -0.101, 0.0487, 0.041] \\ x_3(k) &= [1, 0.752, 0.892, 0.554, -0.113, 0.116, -0.410, 0.171] \end{aligned}$

Hence, in 7 steps the trajectory of the system under the control reaches the desired set.

Topics:

Introduction

- Polynomial Representation of Obstacles and Dynamical Systems
- Risk Bounded Trajectory Planning in Uncertain Environments
- Control of Probabilistic Nonlinear Systems
 - Nonlinear State Feedback Control
 - Receding Horizon Control

Flow-Tube based Control of Probabilistic Nonlinear Systems

Chance Constrained Backward Reachability Set

Continuous-Time Path Planning

Flow-Tube Based Control Of Probabilistic Nonlinear Systems

2) Flow-Tube Based Control Of Probabilistic Nonlinear Systems

95

2) Flow-Tube Based Control Of Probabilistic Nonlinear Systems

96

• As long as the tube is obstacle free, safety is assured.

"Robust Tracking with Model Mismatch for Fast and Safe Planning: an SOS Optimization Approach", Sumeet Singh, Mo Chen, Sylvia L. Herbert, Claire J. Tomlin, Marco Pavone.

"Robust Online Motion Planning via Contraction Theory and Convex Optimization", Sumeet Singh, Anirudha Majumdar, Jean-Jacques Slotine, Marco Pavone

"Funnel libraries for real-time robust feedback motion planning", Anirudha Majumdar, Russ Tedrake

MIT 16.S498: Risk Aware and Robust Nonlinear Planning

Design a trajectory and the associated tube for different steps of the mission (Planning Step),
 Stick to the plan despite all uncertainties (follow and remain inside the tube)

Fall 2019

Flow-Tube Based Control Of Probabilistic Nonlinear Systems

Continuous State space model
$$x_{k+1} = f(x_k, u_k, \omega_k)$$

statesNominal Trajectory $x^* = \{x^*(k), k = 1, ..., T\}$ $u^* = \{u^*(k), k = 0, ..., T-1\}$

Flow-Tube Based Control Of Probabilistic Nonlinear Systems

Continuous State space model
$$x_{k+1} = f(x_k, u_k, \omega_k)$$

statesinputsUncertainty ~ $p(\omega_k)$:probability distributionNominal Trajectory $x^* = \{x^*(k), k = 1, ..., T\}$ $u^* = \{u^*(k), k = 0, ..., T - 1\}$ Flow-tube (\mathcal{FT}): a neighborhood around the nominal trajectory x^* $\mathcal{FT}(k) = \{\mathbf{x} : \mathcal{P}_{k_j}(x) \ge 0, \ j = 1, ..., \ell\}$ Flow-tube at time k
 $\epsilon(k)$ Flow-tube at time k
polynomialpolynomialExample: $\mathcal{FT}(k) = \{\mathbf{x} : ||\mathbf{x}(k) - \mathbf{x}^*(k)||_2^2 \le \epsilon(k)\}$

100

Fall 2019

MIT 16.S498: Risk Aware and Robust Nonlinear Planning

Time-Varying Feedback Controller:

$$\mathbf{u}(k) = \bar{\mathbf{u}}(k) + \mathbf{u}^*(k)$$

Goal: design a nonlinear time-varying state feedback such that states of the system follow the nominal trajectory and remain in the given flow-tube, despite all uncertainties.

Time-Varying Feedback Controller:

$$\mathbf{u}(k) = \bar{\mathbf{u}}(k) + \mathbf{u}^*(k)$$

polynomial state feedback control Nominal control input in error state $\bar{\mathbf{x}}(k) = \mathbf{x}(k) - \mathbf{x}^*(k)$

e.g., $\bar{\mathbf{u}}(k) = \sum_{\alpha \in \mathbb{N}^n} g_{\alpha i}(k) \bar{\mathbf{x}}(k)^\alpha$ Coefficients of polynomial powers of polynomial

Goal: design a nonlinear time-varying state feedback such that states of the system follow the nominal trajectory and remain in the given flow-tube, despite all uncertainties.

Chance Optimization: Find design parameters to max Prob(Success)

- **Success:** states of the system follow the nominal trajectory and remain in the given flow-tube.
- **Design parameters:** Parameters of nonlinear time-varying state feedback i.e., $(-1)^{-1} = 0$

$$\{\mathbf{u}(k), k = 0, ..., T - 1\}$$

Chance Optimization:

Fall 2019

Chance Optimization: Find design parameters to max Prob(Success)

- **Success:** states of the system follow the nominal trajectory and remain in the given flow-tube.
- Design parameters: Parameters of nonlinear time-varying state feedback i.e., $\{\mathbf{u}(k), k=0,...,T-1\}$
 - Chance optimization formulation for long planning horizons *T*, result in a large moment SDP

Chance Optimization: Find design parameters to max Prob(Success)

- **Success:** states of the system follow the nominal trajectory and remain in the given flow-tube.
- **Design parameters:** Parameters of nonlinear time-varying state feedback i.e.,

$$\{\mathbf{u}(k), k = 0, ..., T - 1\}$$

Long Planning Horizon T

Sequential Chance Optimization:

Break the original chance optimization into smaller chance optimization problems.

For k = 0 to T solve following chance optimization:

- Design parameters: Parameters of nonlinear time-varying state feedback at time k, i.e., $\{\mathbf{u}(k)\}$
- Success: $x(k+1) \in \mathcal{FT}(k+1)$

Smaller SDP

Sequential Chance Optimization:

> At k = 0, given:

$$x_{k+1} = f(x_k, u_k, \omega_k), \{x^*(1), u^*(1)\}, \mathcal{FT}(1)$$

 $x_0 \sim \mu_{x_0}$, $\omega_0 \sim \mu_{\omega_0}$

Uncertain Nonlinear System:

 $x_1(k+1) = \omega(k)x_2(k)$ $x_2(k+1) = x_1(k)x_3(k)$ $x_3(k+1) = 1.2x_1(k) - 0.5x_2(k) + 2u(k)$

Source of uncertainties:

Initial states $(x_1(0), x_2(0), x_3(0)) \sim pr_{x_0}(x_1, x_2, x_3)$ Uncertain Parameter $\omega(k) \sim pr_{\omega_k}(\omega)$

Suppose at time k:

 $(x_1(k), x_2(k), x_3(k)) \sim U([-0.1, 0.1]^3) \quad \omega(k) \sim Beta(2,5)$

Uncertain Nonlinear System:

 $x_1(k+1) = \omega(k)x_2(k)$ $x_2(k+1) = x_1(k)x_3(k)$ $x_3(k+1) = 1.2x_1(k) - 0.5x_2(k) + 2u(k)$

Source of uncertainties:

Initial states $(x_1(0), x_2(0), x_3(0)) \sim pr_{x_0}(x_1, x_2, x_3)$ Uncertain Parameter $\omega(k) \sim pr_{\omega_k}(\omega)$

Suppose at time k:

 $(x_1(k), x_2(k), x_3(k)) \sim U([-0.1, 0.1]^3) \quad \omega(k) \sim Beta(2,5)$

➤ We want to find the control input at time k, i.e., u(k), such that states $(x_1(k+1), x_2(k+1), x_3(k+1))$ reach the neighborhood of the given way-point (0,0,0.9), i.e. a ball around the way-point $1^2 - \left(\frac{x_1-0}{0.03}\right)^2 - \left(\frac{x_2-0}{0.02}\right)^2 - \left(\frac{x_3-0.9}{0.4}\right)^3 \ge 0$, with a high probability.

Uncertain Nonlinear System:

 $x_1(k+1) = \omega(k)x_2(k)$ $x_2(k+1) = x_1(k)x_3(k)$ $x_3(k+1) = 1.2x_1(k) - 0.5x_2(k) + 2u(k)$

Source of uncertainties:

Initial states $(x_1(0), x_2(0), x_3(0)) \sim pr_{x_0}(x_1, x_2, x_3)$ Uncertain Parameter $\omega(k) \sim pr_{\omega_k}(\omega)$

Suppose at time k:

 $(x_1(k), x_2(k), x_3(k)) \sim U([-0.1, 0.1]^3) \quad \omega(k) \sim Beta(2,5)$

We want to find the control input at time k, i.e., u(k), such that states $(x_1(k+1), x_2(k+1), x_3(k+1))$ reach the neighborhood of the given way-point (0,0,0.9), i.e. a ball around the way-point $1^2 - \left(\frac{x_1-0}{0.03}\right)^2 - \left(\frac{x_2-0}{0.02}\right)^2 - \left(\frac{x_3-0.9}{0.4}\right)^3 \ge 0$, with a high probability.

$$\mathbf{P}^* = \underset{u(k)}{\text{maximize}} \quad \text{Probability} \left(1 - \left(\frac{x_1(k+1)}{0.03}\right)^2 - \left(\frac{x_2(k+1)}{0.02}\right)^2 - \left(\frac{x_3(k+1)}{0.4}\right)^2 \ge 0 \right)$$

subject to $-1 \le u(k) \le 1$

 $x_k \sim \mu_{x_k}$

 $\mathbf{x}^{*}(\mathbf{k}+\mathbf{1})\mathcal{FT}(k+1)$

Find parameters of $\mathbf{u}(k)$

To max $Prob\{\mathbf{x}(k+1) \in \mathcal{FT}(k+1)\}$

 \succ

 \geq

$$\begin{array}{l} \left(x_{1}(k), x_{2}(k), x_{3}(k)\right) \sim U([-0.1, 0.1]^{3}) \\ i - th \text{ moment of } Uniform([a, b]) : y_{i} = \frac{1}{b-a} \frac{b^{i+1} - a^{i+1}}{i+1} \\ \omega_{k} \sim Beta(5,2) \\ i - th \text{ moment of } Beta(\alpha, \beta) : y_{i} = \frac{\alpha + i - 1}{\alpha + \beta + i - 1} y_{i-1}, y_{0} = 1 \\ \end{array} \right) \\ P^{*} = \underset{u(k)}{\text{maximize } } \operatorname{Probability} \left(1 - \left(\frac{\omega(k) x_{2}(k)}{0.03} \right)^{2} - \left(\frac{x_{1}(k) x_{3}(k)}{0.02} \right)^{2} - \left(\frac{1.2x_{1}(k) - 0.5x_{2}(k) + 2u(k)}{0.4} \right)^{2} \geq 0 \right) \\ \text{subject to } -1 \leq u(k) \leq 1 \\ \left(x_{1}(k), x_{2}(k), x_{3}(k) \right) \sim U([-0.1, 0.1]^{3}) \\ \omega(k) \sim Beta(5,2) \end{array}$$

$$(x_{1}(k), x_{2}(k), x_{3}(k)) \sim U([-0.1, 0.1]^{3})$$

$$i - th \text{ moment of } Uniform([a, b]) : y_{i} = \frac{1}{b-a} \frac{b^{i+1}-a^{i+1}}{i+1}$$

$$\omega_{k} \sim Beta(5,2)$$

$$i - th \text{ moment of } Beta(\alpha, \beta) : y_{i} = \frac{a+i-1}{\alpha+\beta+i-1}y_{i-1}, y_{0} = 1$$

$$P^{*} = \underset{u(k)}{\text{maximize}} \quad \text{Probability} \left(1 - \left(\frac{\omega(k)x_{2}(k)}{0.03}\right)^{2} - \left(\frac{x_{1}(k)x_{3}(k)}{0.02}\right)^{2} - \left(\frac{1.2x_{1}(k) - 0.5x_{2}(k) + 2u(k)}{0.4}\right)^{2} \ge 0 \right)$$

$$\text{subject to} \quad -1 \le u(k) \le 1$$

$$(x_{1}(k), x_{2}(k), x_{3}(k)) \sim U([-0.1, 0.1]^{3})$$

$$\omega(k) \sim Beta(5,2)$$

$$d=2 \quad y_{u} = [1(0.476) \cdot 0.2601, 0.1260, 0.4934]$$

$$\text{Rank Test:}$$

$$\text{Rank M}_{d}(y_{u}) = \text{Rank } M_{d-1}(y_{u}) \approx 1$$

$$\text{eigenvalues = 0.0273, 0.3939, 1.3324 \quad eigenvalues = 0.0273, 1.2328}$$

$$u(k) = y_{u_{1}} = 0.476 \quad (\text{Instead of open loop control, we can look for the feedback gains Probe for u=0.476 obtained by Monte-Carlo = 1$$

https://github.com/jasour/rarnop19/tree/master/Lecture7_ChanceOptimization/Example_3_Moment_ChanceOpt

MIT 16.S498: Risk Aware and Robust Nonlinear Planning

Fall 2019

 $\begin{aligned} x(k+1) &= x(k) + \Delta T(v(k) + 0.1\tilde{v}(k) - 0.05)cos(\theta(k)) \\ y(k+1) &= y(k) + \Delta T(v(k) + \tilde{v}(k))sin(\theta(k)) \\ \theta(k+1) &= \theta(k) + \Delta T(\psi(k) + 0.2\tilde{\psi}(k) - 0.1) \end{aligned}$

- States (x, y, θ) : position and Steering angle
- Control inputs: (v, ψ) Linear and Angular Velocities
- Control Disturbances: $(\tilde{v}, \tilde{\psi})$

- Design the maneuvers, tubes, and nonlinear controller in the offline step.
- > In the real-time, execute the right maneuver.

Fall 2019

- $x(k+1) = x(k) + \Delta T(v(k) + 0.1\tilde{v}(k) 0.05)cos(\theta(k))$ $y(k+1) = y(k) + \Delta T(v(k) + \tilde{v}(k))sin(\theta(k))$ $\theta(k+1) = \theta(k) + \Delta T(\psi(k) + 0.2\tilde{\psi}(k) - 0.1)$
- States (x, y, θ) : position and Steering angle
- Control inputs: (v, ψ) Linear and Angular Velocities
- Control Disturbances: $(\tilde{v}, \tilde{\psi})$
- Nominal trajectory for candidate maneuver $\begin{aligned} x^* &= \{0, 0.15, 0.3, 0.44, 0.56, 0.66, 0.71, 0.72\} \\ y^* &= \{0, 0, 0, 0.04, 0.12, 0.24, 0.38, 0.53\} \\ \theta^* &= \{0, 0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.5708\} \\ (v, \psi)^* &= \{(1.5, 0), (1.5, 3), (1.5, 3), (1.5, 3), (1.5, 3), (1.5, 3), (1.5, 0.7)\} \end{aligned}$
- Flow-Tube at time step k

 $\mathcal{FT}(k) = \{(x, y): x_k^* - 0.06 \le x \le x_k^* + 0.06, y_k^* - 0.06 \le y \le y_k^* + 0.06\}$

- $x(k+1) = x(k) + \Delta T(v(k) + 0.1\tilde{v}(k) 0.05)cos(\theta(k))$ $y(k+1) = y(k) + \Delta T(v(k) + \tilde{v}(k))sin(\theta(k))$ $\theta(k+1) = \theta(k) + \Delta T(\psi(k) + 0.2\tilde{\psi}(k) - 0.1)$
- States (x, y, θ) : position and Steering angle
- Control inputs: (v, ψ) Linear and Angular Velocities
- Control Disturbances: $(\tilde{v}, \tilde{\psi})$
- Nominal trajectory for candidate maneuver $\begin{aligned} x^* &= \{0, 0.15, 0.3, 0.44, 0.56, 0.66, 0.71, 0.72\} \\ y^* &= \{0, 0, 0.04, 0.12, 0.24, 0.38, 0.53\} \\ \theta^* &= \{0, 0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.5708\} \\ (v, \psi)^* &= \{(1.5, 0), (1.5, 3), (1.5, 3), (1.5, 3), (1.5, 3), (1.5, 3), (1.5, 0.7)\} \end{aligned}$
- Flow-Tube at time step k

 $\mathcal{FT}(k) = \{(x, y): x_k^* - 0.06 \le x \le x_k^* + 0.06, y_k^* - 0.06 \le y \le y_k^* + 0.06\}$

• State Feedback control

 $v(k) = g_{12}(x(k) - x^*(k)) + g_{22}(y(k) - y^*(k)) + v^*(k)$ $\psi(k) = g_{11}(\theta(k) - \theta^*(k)) + g_{21}(x(k) - x^*(k)) + g_{31}(y(k) - y^*(k)) + \psi^*(k)$

- Control constraints:
 - $-10 \le g_{11}, g_{21}, g_{31}, g_{12}, g_{22} \le 10$ $0 \le v(k) \le 2$

To obtain the polynomial dynamics, we compute a degree 3 Taylor expansion of the dynamics of the system around the nominal trajectory, at each time k.

Trajectories and Control inputs of the vehicle for different realization of uncertainties

Fall 2019

• Instead of maximizing the chance of reaming inside the tube, we can look for **chance constrained** controllers.

Example: Chance Constrained Formulation

Uncertain Nonlinear System:
$$x_1(k+1) = \omega(k)x_2(k)$$

 $x_2(k+1) = x_1(k)x_3(k)$
 $x_3(k+1) = 1.2x_1(k) - 0.5x_2(k) + 2u(k)$

Source of uncertainties: Initial states $(x_1(0), x_2(0), x_3(0)) \sim pr_{x_0}(x_1, x_2, x_3)$ Uncertain Parameter $\omega(k) \sim pr_{\omega_k}(\omega)$

Suppose at time k: $(x_1(k), x_2(k), x_3(k)) \sim U([-0.1, 0.1]^3)$ $\omega_k \sim Beta(2,5)$

→ We want to find a set of control inputs at time *k* that steer states $(x_1(k+1), x_2(k+1), x_3(k+1))$ to the neighborhood of the given way-point (0,0,0.9), i.e. a ball around the way-point $1^2 - \left(\frac{x_1-0}{0.03}\right)^2 - \left(\frac{x_2-0}{0.02}\right)^2 - \left(\frac{x_3-0.9}{0.4}\right)^3 \ge 0$, with a probability greater or equal to $1 - \Delta$.

Example: Chance Constrained Formulation

Uncertain Nonlinear System:
$$x_1(k+1) = \omega(k)x_2(k)$$

 $x_2(k+1) = x_1(k)x_3(k)$
 $x_3(k+1) = 1.2x_1(k) - 0.5x_2(k) + 2u(k)$

Source of uncertainties: Initial states $(x_1(0), x_2(0), x_3(0)) \sim pr_{x_0}(x_1, x_2, x_3)$ Uncertain Parameter $\omega(k) \sim pr_{\omega_k}(\omega)$

> Suppose at time k: $(x_1(k), x_2(k), x_3(k)) \sim U([-0.1, 0.1]^3)$ $\omega_k \sim Beta(2,5)$

→ We want to find a set of control inputs at time k that steer states $(x_1(k+1), x_2(k+1), x_3(k+1))$ to the neighborhood of the given way-point (0,0,0.9), i.e. a ball around the way-point $1^2 - \left(\frac{x_1-0}{0.03}\right)^2 - \left(\frac{x_2-0}{0.02}\right)^2 - \left(\frac{x_3-0.9}{0.4}\right)^3 \ge 0$, with a probability greater or equal to $1 - \Delta$.

$$U_{cc} = \{u(k) : \text{Probability}(Success) \ge 1 - \Delta\}$$
$$= \left\{ u(k) : \text{Probability}\left(1 - \left(\frac{x_1(k+1)}{0.03}\right)^2 - \left(\frac{x_2(k+1)}{0.02}\right)^2 - \left(\frac{x_3(k+1)}{0.4}\right)^2 \ge 0\right) \ge 1 - \Delta \right\}$$

• We can also fin the inner approximation (Lecture 7)

https://github.com/jasour/rarnop19/tree/master/Lecture7_ChanceOptimization/Example_3_SOS_ChanceConstrained

MIT 16.S498: Risk Aware and Robust Nonlinear Planning

chance constrained flow-tube based control:

Topics:

Introduction

- Polynomial Representation of Obstacles and Dynamical Systems
- Risk Bounded Trajectory Planning in Uncertain Environments
- Control of Probabilistic Nonlinear Systems
 - Nonlinear State Feedback Control
 - Receding Horizon Control
- Flow-Tube based Control of Probabilistic Nonlinear Systems

Chance Constrained Backward Reachability Set

Continuous-Time Path Planning in Uncertain Environments

Backward Reachability Set Analysis of Probabilistic Nonlinear Systems

Reachability Set Analysis of Dynamical System

Goal: Find a set of initial states X_0 for which set X_T is reachable in T time steps under input constraints $u_k \in U$

Reachability Set Analysis of Dynamical System

Goal: Find a set of initial states X_0 for which set X_T is reachable in T time steps under input constraints $u_k \in U$

Fall 2019

- \succ To avoid the target set (pedestrian), vehicle at time 0 should be outside of the initial set X_0 .
- > To reach to the landing site, mars lander should start the landing process from of the initial set X_0 .

• Uncertain dynamical system: $x_{k+1} = f(x_k, u_k, \omega_k)$

Probability $(x_T \in \chi_T(\omega)) \ge 1 - \Delta$

$$\chi_0^{\Delta} = \{x_0 : \text{Probability}(x_T \in \chi_T(\omega)) \ge 1 - \Delta\}$$

Continuous
State space model $x_{k+1} = f(x_k, u_k, \omega_k)$
states $u_k \in U$
Input ConstraintsTarget Set $X_T(\omega_T)$ Uncertainty ~ $p(\omega_T)$:probability distributionInput Constraints

$$\chi_{0}^{\Delta} = \{x_{0} : \operatorname{Probability}(x_{T} \in \chi_{T}(\omega)) \geq 1 - \Delta\}$$

$$\operatorname{Target set} X_{T}$$

$$\exists u_{k} \in U$$

$$\chi_{0}^{\Delta}$$

$$\chi_{0}^{\Delta}$$

$$\chi_{0}^{\Delta}$$

$$\exists u_{k} \in U$$

$$\exists u_{k} \in U$$

$$\exists u_{k} \in U$$

$$\chi_0^{\Delta} = \{ x_0 : \text{Probability}(x_T \in \chi_T(\omega)) \ge 1 - \Delta \}$$

• Target Set:
$$\chi_T(v) = \{x: g(x,v) \ge 0\}$$

• States at time step T:
$$x_T = p_T(x_0, u_k |_{k=0}^{T-1}, \omega_k |_{k=0}^{T-1})$$

Goal: Find a set of initial states X_0 for which Probability that set X_T is reachable in T time steps under input constraints is greater than $1 - \Delta$.

$$\chi_0^{\Delta} = \{x_0 : \text{Probability}(x_T \in \chi_T(\omega)) \ge 1 - \Delta\}$$

• Target Set:
$$\chi_T(v) = \{x: g(x,v) \geq 0\}$$

• States at time step T: $x_T = p_T(x_0, u_k |_{k=0}^{T-1}, \omega_k |_{k=0}^{T-1})$

•
$$x_T \in \chi_T(v)$$
 ______ $g(x_T, v) \ge 0$ $g(x_T, v) \ge 0$ $g(x_T, v) \ge 0$ $\mathcal{P}(x_0, u_k |_{k=0}^{T-1}, \omega_k |_{k=0}^{T-1}, v) \ge 0$

$$\chi_0^{\Delta} = \{ x_0 : \text{Probability}(x_T \in \chi_T(\omega)) \ge 1 - \Delta \}$$

• Target Set:
$$\chi_T(v) = \{x : g(x, v) \ge 0\}$$

• States at time step T: $x_T = p_T(x_0, u_k |_{k=0}^{T-1}, \omega_k |_{k=0}^{T-1})$
• $x_T \in \chi_T(v) \xrightarrow{g(x_T, v) \ge 0} g(x_T, v) \ge 0$

$$\mathcal{P}(x_0, u_k|_{k=0}^{T-1}, \omega_k|_{k=0}^{T-1}, v)$$

$$\chi_0^{\Delta} = \{ x_0 : \text{Probability} \left(\mathcal{P}(x_0, u_k |_{k=0}^{T-1}, \omega_k |_{k=0}^{T-1}, v) \ge 0 \right) \ge 1 - \Delta \}$$

$$\chi_0^{\Delta} = \{x_0 : \text{Probability} \left(\mathcal{P}(x_0, u_k |_{k=0}^{T-1}, \omega_k |_{k=0}^{T-1}, v) \ge 0 \right) \ge 1 - \Delta \}$$

Design parameter ? Uncertain parameters with known probability distribution

$$\chi_0^{\Delta} = \{x_0 : \text{Probability} \left(\mathcal{P}(x_0, u_k |_{k=0}^{T-1}, \omega_k |_{k=0}^{T-1}, v) \ge 0 \right) \ge 1 - \Delta \}$$

$$\text{Design parameter}$$

$$\text{Uncertain parameters with known probability distribution}$$

$$u_k \sim Uniform \text{ over the constraint set } U$$

Goal: Find a set of initial states X_0 for which Probability that set X_T is reachable in T time steps under input constraints is greater than $1 - \Delta$.

$$\chi_0^{\Delta} = \{x_0 : \text{Probability} \left(\mathcal{P}(x_0, u_k |_{k=0}^{T-1}, \omega_k |_{k=0}^{T-1}, v) \ge 0 \right) \ge 1 - \Delta \}$$

$$\text{Design parameter}$$

$$\text{Uncertain parameters with known probability distribution}$$

$$u_k \sim Uniform \text{ over the constraint set } U$$

 χ_0^{Δ} : Chance constrained set with respect to uncertainties u_k , ω_k , v and design variable x_0 .

$$\chi_0^{\Delta} = \{ x_0 : \text{Probability} \left(\mathcal{P}(x_0, u_k |_{k=0}^{T-1}, \omega_k |_{k=0}^{T-1}, v) \ge 0 \right) \ge 1 - \Delta \}$$

Goal: Find a set of initial states X_0 for which Probability that set X_T is reachable in T time steps under input constraints is greater than $1 - \Delta$.

$$\chi_0^{\Delta} = \{x_0 : \text{Probability} \left(\mathcal{P}(x_0, u_k |_{k=0}^{T-1}, \omega_k |_{k=0}^{T-1}, v) \ge 0 \right) \ge 1 - \Delta \}$$

$$\text{Design parameter}$$

$$u_k \sim Uniform \text{ over the constraint set } U$$

 χ_0^Δ : Chance constrained set with respect to uncertainties u_k , ω_k , v and design variable x_0 .

$$\chi_0^{\Delta} = \{ x_0 : \text{Probability} \left(\mathcal{P}(x_0, u_k |_{k=0}^{T-1}, \omega_k |_{k=0}^{T-1}, v) \ge 0 \right) \ge 1 - \Delta \}$$

Using the results of Lecture 7:Nonlinear Chance Constrained and Chance Optimization: $\bigvee \chi_0^{\Delta} = \{x_0 \in \mathbb{R}^n : \mathcal{P}(x) \ge 1 - \Delta\}$

- A. Jasour, B. Williams, "Chance Constrained Backward Reachable Set For Probabilistic Nonlinear Systems", (To appear)
- MIT 16.S498: Risk Aware and Robust Nonlinear Planning

Topics:

Introduction

- Polynomial Representation of Obstacles and Dynamical Systems
- Risk Bounded Trajectory Planning in Uncertain Environments
- Control of Probabilistic Nonlinear Systems
 - Nonlinear State Feedback Control
 - Receding Horizon Control
- Flow-Tube based Control of Probabilistic Nonlinear Systems
- Chance Constrained Backward Reachability Set
- Continuous-Time Path Planning

Sum of Squares Based Continuous Time Path Planning

 To design trajectories for dynamical systems, we can rely on motion planning algorithms (e.g., trajectory optimization, *rrt*^{*}, PRM,....)

• In this section, we look at one possible Sum-of-Squares based technique.

Given, initial and goal points inside a convex polytope (safe region), Find a polynomial trajectory that
 i) Connects the given points and ii) is safe over its entire length (remains inside the safe region).

Given, initial and goal points inside a convex polytope (safe region), Find a polynomial trajectory that
 i) Connects the given points and ii) is safe over its entire length (remains inside the safe region).

polynomial trajectory :

Polynomial in time with unknown coefficients c_{χ_i}

 $x(t) = p_x(t) = \sum_{i=1}^{d} c_{x_i} t^i$ $y(t) = p_y(t) = \sum_{i=1}^{d} c_{y_i} t^i$

Polynomial in time with unknown coefficients c_{y_i}

Given, initial and goal points inside a convex polytope (safe region), Find a polynomial trajectory that
 i) Connects the given points and ii) is safe over its entire length (remains inside the safe region).

polynomial trajectory :

$$\begin{bmatrix} x(t) = p_x(t) = \sum_{i=1}^d c_{x_i} t^i & \text{Polynomial in time with unknown coefficients } c_{x_i} \\ y(t) = p_y(t) = \sum_{i=1}^d c_{y_i} t^i & \text{Polynomial in time with unknown coefficients } c_{y_i} \end{bmatrix}$$

Boundary conditions:

$$\begin{array}{c} (x^*(0), y^*(0)) = (p_x(0), p_y(0)) \\ (x^*(T), y^*(T)) = (p_x(T), p_y(T)) \end{array}$$

Linear constraints

 $(\mathbf{0})$

 $(0), y^*($

 (x^*)

 $(T), y^*(T)$

< b

 $(x^*(T))$

(x(t), y(t))

 $A[x, y]^T$
Given, initial and goal points inside a convex polytope (safe region), Find a polynomial trajectory that
 i) Connects the given points and ii) is safe over its entire length (remains inside the safe region).

polynomial trajectory :

$$\begin{bmatrix} x(t) = p_x(t) = \sum_{i=1}^d c_{x_i} t^i & \text{Polynomial in time with unknown coefficients } c_{x_i} \\ y(t) = p_y(t) = \sum_{i=1}^d c_{y_i} t^i & \text{Polynomial in time with unknown coefficients } c_{y_i} \end{bmatrix}$$

Boundary conditions:

$$\begin{array}{c} (x^*(0),y^*(0)) = (p_x(0),p_y(0)) \\ (x^*(T),y^*(T)) = (p_x(T),p_y(T)) \end{array} \text{ Linear constraints} \end{array}$$

Safety Constraints:

$$b - A[x(t), y(t)]^T \ge 0 \quad \forall t = [0, T] \qquad \text{SOS constraints}$$

• Similarly, we can add additional constraints on velocity, acceleration

145

A[x,y]

< b

 x^*

 $', y^*$ i

 (x^*)

(x(t), y(t))

Given, initial and goal points inside a convex polytope (safe region), Find a polynomial trajectory that
 i) Connects the given points and ii) is safe over its entire length (remains inside the safe region).

polynomial trajectory :

$$x(t) = p_x(t) = \sum_{i=1}^d c_{x_i} t^i \qquad y(t) = p_y(t) = \sum_{i=1}^d c_{y_i} t^i$$

> SOS based SDP in the coefficients of the trajectories $p_x(t)$ and $p_y(t)$

- Given, i) a set of convex regions that covers the obstacle-free space, and ii) initial and goal point
 We can formulate the trajectory planning problem as mixed-integer SDP.
 - integer variable for each convex region to choose the sequence of regions to construct the trajectory.
 - SDP for each convex region.

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

R. Deits, R. Tedrake"Efficient mixed-integer planning for UAVs in cluttered environments", IEEE International Conference on Robotics and Automation(ICRA) 2015.

Topics:

Introduction

- Polynomial Representation of Obstacles and Dynamical Systems
- Risk Bounded Trajectory Planning in Uncertain Environments
- Control of Probabilistic Nonlinear Systems
 - Nonlinear State Feedback Control
 - Receding Horizon Control
- Flow-Tube based Control of Probabilistic Nonlinear Systems
- Chance Constrained Backward Reachability Set
- Continuous-Time Path Planning

- A. Jasour, "Convex Approximation of Chance Constrained Problems: Application in Systems and Control", School of Electrical Engineering and Computer Science, The Pennsylvania State University, 2016
- Fabrizio Dabbene and Didier Henrion, "Set approximation via minimum-volume polynomial sublevel sets", European Control Conference (ECC), pp 1114-1119, 2013
- F. Dabbene, D. Henrion, C. M.Lagoa "Simple approximations of semialgebraic sets and their applications to control", Automatica Volume 78, pp. 110-118, 2017.
- A. A. Ahmadi, G. Hall, A. Makadia, and V. Sindhwani, "Sum of Squares Polynomials and Geometry of 3D Environments" Robotics: Science and Systems, 2017.
- A. Jasour, Brian C. Williams, "Risk Contours Map for Risk Bounded Motion Planning under Perception Uncertainties", Robotics: Science and System (RSS), Germany, 2019.
- A. Jasour, Brian Williams, "Convex Optimization For Flow-Tube Based Control Of Nonlinear Systems With Probabilistic Uncertainties", *IEEE Conference on Decision and Control (CDC), 2019.*
- A. Jasour, C. Lagoa, "Convex Relaxations of a Probabilistically Robust Control DesignProblem", 52st IEEE Conference on Decision and Control, Florence, Italy, 2013
- A. Jasour, C. Lagoa, "Convex Chance Constrained Model Predictive Control", IEEE 55th Conference on Decision and Control (CDC), 2016, Las Vegas, USA,
- A. Jasour, B. Williams, "Chance Constrained Backward Reachable Set For Probabilistic Nonlinear Systems", (To appear)

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

16.S498 Risk Aware and Robust Nonlinear Planning Fall 2019

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.