10.37 Chemical and Biological Reaction Engineering, Spring 2007 Prof. K. Dane Wittrup **Lecture 15: Gene Expression and Trafficking Dynamics**

This lecture covers: Approach to steady state and receptor trafficking

Central dogma of molecular biology:

DNA \rightarrow mRNA \rightarrow protein transcription translation

Material balance on one specific mRNA

 $Accumulation = synthesis - degradation$

$$
C_{mRNA} \equiv \frac{\text{moles mRNA}}{\text{cell volume}}
$$

 $K_r \equiv \frac{mol \text{ mRNA}}{(\text{time})(\text{cell volume})}$, transcription (function of gene dosage, inducers, etc.)

 $V_i \equiv \frac{\text{cell volume}}{\text{vessel volume}}$

$$
\frac{d\left(C_{mRNA} \mathbf{V}_i\right)}{dt} = K_r \mathbf{V}_i - \gamma_r C_{mRNA} \mathbf{V}_i
$$

 γ_r = first order rate constant for mRNA degredation

 $V_i \equiv a$ function of time (cells grow, divide)

 \rightarrow can't pull out of the derivative

Do the chain rule:

$$
C_{mRNA} \frac{d\mathbf{V}_i}{dt} + \mathbf{V}_i \frac{dC_{mRNA}}{dt} = K_r \mathbf{V}_i - \gamma_r C_{mRNA} \mathbf{V}_i
$$

$$
\frac{dC_{mRNA}}{dt} = K_r - \gamma_r C_{mRNA} - C_{mRNA} \frac{1}{\mathbf{V}_i} \frac{d\mathbf{V}_i}{dt}
$$

simplify:
$$
\frac{1}{V_i} \frac{dV_i}{dt} = \mu
$$
 (specific growth rate in exponential growth)

$$
\frac{dC_{mRNA}}{dt} = K_r - \gamma_r C_{mRNA} - \underbrace{\mu C_{mRNA}}_{mRNA}
$$

dilution by growth term

(b/c concentration is on a per-cell volume basis)

Cite as: K. Dane Wittrup, course materials for 10.37 Chemical and Biological Reaction Engineering, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

$$
\frac{dC_{mRNA}}{dt}=K_{r}-(\gamma_{r}+\mu)C_{mRNA}
$$

at steady-state:

$$
C_{mRNA, SS} = \frac{K_r}{(\gamma_r + \mu)}
$$

transient case, analytical solution (just integrate)

independent of the transcription rate constant K_r

Figure 1. Concentration of C_{mRNA} versus time. At long times steady state is approached.

Similar rate expression for the protein:

(again, per-cell volume basis, analogous constants)

$$
\frac{dC_p}{dt} = K_p C_{mRNA} - (\gamma_p + \mu)C_p
$$

function of time, solved for above

$$
\frac{dC_p}{dt} = K_p \frac{K_r}{(\gamma_r + \mu)} \Big(1 - e^{-(\gamma_r + \mu)t} \Big) - (\gamma_p + \mu) C_p
$$

steady-state: $\frac{d}{d} = 0$, $t \to \infty$ *dt K K*

$$
C_{p, SS} = \frac{K_r K_p}{(\gamma_r + \mu)(\gamma_p + \mu)}
$$

10.37 Chemical and Biological Reaction Engineering, Spring 2007 Lecture 15 Prof. K. Dane Wittrup **Profession Contract Contract**

Cite as: K. Dane Wittrup, course materials for 10.37 Chemical and Biological Reaction Engineering, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

$$
\frac{C_{p, SS}}{C_{mRNA, SS}} = \frac{K_p}{\gamma_p + \mu}
$$

C K Note: K_p , γ_p vary from protein to protein and condition

to condition

Integrate
$$
\frac{dC_p}{dt}
$$
:
\n
$$
C_p = C_{p, SS} \left(1 + \frac{(\gamma_r + \mu)e^{-(\gamma_p + \mu)t} - (\gamma_p + \mu)e^{-(\gamma_r + \mu)t}}{\gamma_p - \gamma_r} \right)
$$

\nUsually, $\gamma_p \ll \gamma_r$

in E. coli $\frac{\ln 2}{\ln 2}$ ~7 minutes on average. γ *r* for most proteins, $\frac{\ln 2}{\ln 2}$ ~ hours to days. χ_{p} ^{*p*}

also, $\gamma_r \gg \mu$

Apply assumptions to get:

$$
C_p = \frac{K_p K_r}{\gamma_r (\gamma_p + \mu)} \Big(1 - e^{-(\gamma_p + \mu)t} \Big)
$$

Delays in synthesis

Cite as: K. Dane Wittrup, course materials for 10.37 Chemical and Biological Reaction Engineering, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Figure 2. Concentration of protein versus time.

However, the delay can dramatically destabilize feedback loops.

Cellular compartmentalization

 $C_{p,1} \rightarrow C_{p,2}$ where $C_{p,1} \equiv C_p$ for compartment 1, and $C_{p,2} \equiv C_p$ for compartment 2 rate = $K_{transport}C_{p,1}$

Figure 3. Diagram of protein-ligand binding on the cell surface.